Reference
imfusion
imfusion - ImFusion SDK for Medical Imaging
This module provides Python bindings for the C++ ImFusion libraries.
- exception imfusion.AlgorithmExecutionError
Bases:
RuntimeError
- exception imfusion.FileNotFoundError
Bases:
FileNotFoundError
- exception imfusion.IncompatibleError
Bases:
ValueError
- exception imfusion.MissingLicenseError
Bases:
RuntimeError
- class imfusion.Algorithm(self: BaseAlgorithm, actions: list[object])
Bases:
BaseAlgorithm
Base class for Algorithms.
An Algorithm accepts certain Data as input and performs some computation on it.
Example for an algorithm that takes exactly one image and prints its name:
>>> class MyAlgorithm(Algorithm): ... def __init__(self, image): ... super().__init__() ... self.image = image ... ... @classmethod ... def convert_input(cls, data): ... images = data.images() ... if len(images) == 1 and len(data) == 1: ... return [images[0]] ... raise IncompatibleError('Requires exactly one image') ... ... def compute(self): ... print(self.image.name)
In order to make an Algorithm available to the ImFusion Suite (i.e. the context menu when right-clicking on selected data), it has to be registered to the ApplicationController:
>>> imfusion.register_algorithm('Python.MyAlgorithm','My Algorithm', MyAlgorithm) # DOCTEST: +skip
If the Algorithm is created through the ImFusion Suite, the
convert_input()
method is called to determine if the Algorithm is compatible with the desired input data. If this method does not raise an exception, the Algorithm is initialized with the data returned byconvert_input()
. The implementation is similar to this:try: input = MyAlgorithm.convert_input(some_data) return MyAlgorithm(*input) except IncompatibleError: return None
The Algorithm class also provides default implementations for the
configuration()
andconfigure()
methods that automatically serialize attributes created withadd_param()
.- class action(display_name: str)
Bases:
object
Decorator to demarcate a method as an “action”. Actions are displayed as additional buttons when creating an AlgorithmController in the Suite and can be run generically, using their id, through
run_action()
.- Parameters:
display_name (str) – Text that should be shown on the Controller button.
- static action_wrapper(func: Callable[[BaseAlgorithm], Status | None]) Callable[[BaseAlgorithm], Status]
Helper that returns
UNKNOWN
automatically if the wrapped method did not return a status.- Parameters:
func (Callable[[BaseAlgorithm], Status | None]) –
- Return type:
- add_param(name, value, attributes='')
Add a new parameter to the object.
The parameter is available as a new attribute with the given name and value. The attribute will be configured automatically.
>>> class MyAlgorithm(Algorithm): ... def __init__(self): ... super().__init__() ... self.add_param('x', 5) >>> a = MyAlgorithm() >>> a.x 5
- configuration()
Returns a copy of the current algorithm configuration.
- configure(p)
Sets the current algorithm configuration with the given Properties.
- classmethod convert_input(data: List[Data]) List[Data]
Convert the given DataList to a valid input for the algorithm.
Must be overridden in derived classes. Raise an
IncompatibleError
if the given data does not exactly match the required input of the algorithm. Should return a list, a dict or a generator.
- output()
Return the output generated by the previous call to
compute()
. The returned type must be a list of Data objects! The default implementation returns an empty list.
- class imfusion.Annotation
Bases:
pybind11_object
- class AnnotationType(self: AnnotationType, value: int)
Bases:
pybind11_object
Members:
CIRCLE
LINE
POINT
POLY_LINE
RECTANGLE
- CIRCLE = <AnnotationType.CIRCLE: 0>
- LINE = <AnnotationType.LINE: 1>
- POINT = <AnnotationType.POINT: 2>
- POLY_LINE = <AnnotationType.POLY_LINE: 3>
- RECTANGLE = <AnnotationType.RECTANGLE: 4>
- property name
- property value
- on_editing_finished(self: Annotation, callback: object) SignalConnection
Register a callback which is call when the annotation is fully defined by the user.
The callback must not require any arguments.
>>> a = imfusion.app.annotation_model.create_annotation(imfusion.Annotation.LINE) >>> def callback(): ... print("All points are defined") >>> a.on_editing_finished(callback) >>> a.start_editing()
- on_points_changed(self: Annotation, callback: object) SignalConnection
Register a callback which is call when any of the points change position.
The callback must not require any arguments.
>>> a = imfusion.app.annotation_model.create_annotation(imfusion.Annotation.LINE) >>> def callback(): ... print("Points changed") >>> a.on_points_changed(callback) >>> a.start_editing()
- start_editing(self: Annotation) None
Start interactive placement of the annotation.
This can currently only be called once.
- CIRCLE = <AnnotationType.CIRCLE: 0>
- LINE = <AnnotationType.LINE: 1>
- POINT = <AnnotationType.POINT: 2>
- POLY_LINE = <AnnotationType.POLY_LINE: 3>
- RECTANGLE = <AnnotationType.RECTANGLE: 4>
- property color
Color of the annotation as a normalized RGB tuple.
- property editable
Whether the annotation can be manipulated by the user.
- property label_text
- property label_visible
- property line_width
- property max_points
The maximum amount of points this annotation supports.
A -1 indicates that this annotation supports any number of points.
- property name
- property points
The points which define the annotation in world coordinates.
- property type
Return the type of this annotation.
Return None if this type is only partially supported from Python.
- property visible
- class imfusion.AnnotationModel
Bases:
pybind11_object
- create_annotation(self: AnnotationModel, arg0: AnnotationType) Annotation
- property annotations
- class imfusion.ApplicationController
Bases:
pybind11_object
A ApplicationController instance serves as the center of the ImFusionSDK.
It provides an OpenGL context, a
DataModel
, executes algorithms and more. While multiple instances are possible, in general there is only one instance.- add_algorithm(self: ApplicationController, id: str, data: list = [], properties: Properties = None) object
Add the algorithm with the given name to the application.
The algorithm will only be created if it is compatible with the given data. The optional Properties object will be used to configure the algorithm. Returns the created algorithm or
None
if no compatible algorithm could be found.>>> app.add_algorithm("Create Synthetic Data", []) <imfusion._bindings.BaseAlgorithm object at ...>
- close_all(self: ApplicationController) None
Delete all algorithms and datasets. Make sure to not reference any deleted objects after calling this!
- execute_algorithm(self: ApplicationController, id: str, data: list = [], properties: Properties = None) list
Execute the algorithm with the given name and returns its output.
The algorithm will only be executed if it is compatible with the given data. The optional
Properties
object will be used to configure the algorithm before executing it. Any data created by the algorithm is added to theDataModel
before being returned.
- load_workspace(self: ApplicationController, path: str, **kwargs) bool
Loads a workspace file and returns True if the loading was successful. Placeholders can be specified as keyword arguments, for example: >>> app.load_workspace(“path/to/workspace.iws”, sweep=sweep, case=case)
- open(self: ApplicationController, path: str) list
Tries to open the given filepath as data. If successful the data is added to
DataModel
and returned. Otherwise raises a FileNotFoundError.
- remove_algorithm(self: ApplicationController, algorithm: BaseAlgorithm) None
Remove and deletes the given algorithm from the application. Don’t reference the given algorithm afterwards!
- save_workspace(self: ApplicationController, path: str) bool
Saves current workspace to a iws file
- select_data(*args, **kwargs)
Overloaded function.
select_data(self: imfusion._bindings.ApplicationController, arg0: imfusion._bindings.Data) -> None
select_data(self: imfusion._bindings.ApplicationController, arg0: imfusion._bindings.DataList) -> None
select_data(self: imfusion._bindings.ApplicationController, arg0: list) -> None
- update_display(self: ApplicationController) None
- property algorithms
Return a list of all open algorithms.
- property annotation_model
- property data_model
- property display
- property selected_data
- class imfusion.BaseAlgorithm(self: BaseAlgorithm, actions: list[object])
Bases:
Configurable
Low-level base class for all algorithms.
This interface mirrors the C++ interface very closely. Instances of this class are returned when you create an Algorithm that exists in the C++ SDK, either through
add_algorithm()
or :meth:~imfusion.create_algorithm`.If you want to implement your own Algorithms from Python see
Algorithm
instead.- class Status(self: Status, value: int)
Bases:
pybind11_object
Members:
UNKNOWN
SUCCESS
ERROR
INVALID_INPUT
INCOMPLETE_INPUT
OUT_OF_MEMORY_HOST
OUT_OF_MEMORY_GPU
UNSUPPORTED_GPU
UNKNOWN_ACTION
USER
- ERROR = <Status.ERROR: 1>
- INCOMPLETE_INPUT = <Status.INCOMPLETE_INPUT: 3>
- INVALID_INPUT = <Status.INVALID_INPUT: 2>
- OUT_OF_MEMORY_GPU = <Status.OUT_OF_MEMORY_GPU: 5>
- OUT_OF_MEMORY_HOST = <Status.OUT_OF_MEMORY_HOST: 4>
- SUCCESS = <Status.SUCCESS: 0>
- UNKNOWN = <Status.UNKNOWN: -1>
- UNKNOWN_ACTION = <Status.UNKNOWN_ACTION: 7>
- UNSUPPORTED_GPU = <Status.UNSUPPORTED_GPU: 6>
- USER = <Status.USER: 1000>
- property name
- property value
- compute(self: BaseAlgorithm) None
- output(self: BaseAlgorithm) list
- output_annotations(self: BaseAlgorithm) list[Annotation]
- run_action(self: BaseAlgorithm, id: str) Status
Run one of the registered actions.
- Parameters:
id (str) – Identifier of the action to run.
- ERROR = <Status.ERROR: 1>
- INCOMPLETE_INPUT = <Status.INCOMPLETE_INPUT: 3>
- INVALID_INPUT = <Status.INVALID_INPUT: 2>
- OUT_OF_MEMORY_GPU = <Status.OUT_OF_MEMORY_GPU: 5>
- OUT_OF_MEMORY_HOST = <Status.OUT_OF_MEMORY_HOST: 4>
- SUCCESS = <Status.SUCCESS: 0>
- UNKNOWN = <Status.UNKNOWN: -1>
- UNKNOWN_ACTION = <Status.UNKNOWN_ACTION: 7>
- UNSUPPORTED_GPU = <Status.UNSUPPORTED_GPU: 6>
- USER = <Status.USER: 1000>
- property actions
List of registered actions.
- property id
- property input
- property name
- property status
- class imfusion.Configurable
Bases:
pybind11_object
- configuration(self: Configurable) Properties
- configure(self: Configurable, properties: Properties) None
- configure_defaults(self: Configurable) None
- class imfusion.ConsoleController(self: ConsoleController, name: str = 'ImFusion Python Module')
Bases:
ApplicationController
ApplicationController without a UI interface.
This class is not available in the embedded Python interpreter in the ImFusionSuite.
- class imfusion.CroppingMask(self: CroppingMask, dimensions: ndarray[numpy.int32[3, 1]])
Bases:
Mask
Simple axis-aligned cropping mask with optional roundness.
- class RoundDims(self: RoundDims, value: int)
Bases:
pybind11_object
Members:
XY
YZ
XZ
XYZ
- XY = <RoundDims.XY: 0>
- XYZ = <RoundDims.XYZ: 3>
- XZ = <RoundDims.XZ: 2>
- YZ = <RoundDims.YZ: 1>
- property name
- property value
- XY = <RoundDims.XY: 0>
- XYZ = <RoundDims.XYZ: 3>
- XZ = <RoundDims.XZ: 2>
- YZ = <RoundDims.YZ: 1>
- property border
Number of pixels cropped away
- property inverted
Whether the mask is inverted
- property roundness
Roundness in percent (100 means an ellipse, 0 a rectangle)
- property roundness_dims
Which dimensions the roundness parameter should be applied
- class imfusion.Data
Bases:
pybind11_object
- class Kind(self: Kind, value: int)
Bases:
pybind11_object
Members:
UNKNOWN
IMAGE
VOLUME
IMAGE_SET
VOLUME_SET
IMAGE_STREAM
VOLUME_STREAM
POINT_SET
SURFACE
TRACKING_STREAM
TRACKING_DATA
- IMAGE = <Kind.IMAGE: 1>
- IMAGE_SET = <Kind.IMAGE_SET: 3>
- IMAGE_STREAM = <Kind.IMAGE_STREAM: 5>
- POINT_SET = <Kind.POINT_SET: 7>
- SURFACE = <Kind.SURFACE: 8>
- TRACKING_DATA = <Kind.TRACKING_DATA: 10>
- TRACKING_STREAM = <Kind.TRACKING_STREAM: 9>
- UNKNOWN = <Kind.UNKNOWN: 0>
- VOLUME = <Kind.VOLUME: 2>
- VOLUME_SET = <Kind.VOLUME_SET: 4>
- VOLUME_STREAM = <Kind.VOLUME_STREAM: 6>
- property name
- property value
- class Modality(self: Modality, value: int)
Bases:
pybind11_object
Members:
NA
XRAY
CT
MRI
ULTRASOUND
VIDEO
NM
OCT
LABEL
- CT = <Modality.CT: 2>
- LABEL = <Modality.LABEL: 8>
- MRI = <Modality.MRI: 3>
- NA = <Modality.NA: 0>
- NM = <Modality.NM: 6>
- OCT = <Modality.OCT: 7>
- ULTRASOUND = <Modality.ULTRASOUND: 4>
- VIDEO = <Modality.VIDEO: 5>
- XRAY = <Modality.XRAY: 1>
- property name
- property value
- property components
- property kind
- property name
- class imfusion.DataComponent(self: DataComponent)
Bases:
pybind11_object
Data components provide a way to generically attach custom information to
Data
.Data and StreamData are the two main classes that hold a list of data components, allowing custom information (for example optional data or configuration settings) to be attached to instances of these classes. Data components are meant to be used for information that is bound to a specific Data instance and that can not be represented by the usual ImFusion data types.
Data components should implement the Configurable methods, in order to support generic (de)serialization.
Note
Data components are supposed to act as generic storage for custom information. When subclassing DataComponent, you should not implement any heavy evaluation logic since this is the domain of Algorithms or other classes accessing the DataComponents.
Example
class MyComponent(imfusion.DataComponent, accessor_name="my_component"): def __init__(self, a=""): imfusion.DataComponent.__init__(self) self.a = a @property def a(self): return self._a @a.setter def a(self, value): if value and not isinstance(value, str): raise TypeError("`a` must be of type `str`") self._a = value def configure(self, properties: imfusion.Properties) -> None: self.a = str(properties["a"]) def configuration(self) -> imfusion.Properties: return imfusion.Properties({"a": self.a}) def __eq__(self, other: "MyComponent") -> bool: return self.a == other.a
- configuration(self: DataComponent) Properties
- configure(self: DataComponent, properties: Properties) None
- property id
Returns a unique string identifier for this type of data component
- class imfusion.DataComponentBase
Bases:
Configurable
- property id
Returns the unique string identifier of this component class.
- class imfusion.DataComponentList
Bases:
pybind11_object
A list of DataComponent. The list contains properties for specific DataComponent types. Each DataComponent type can only occur once.
- __getitem__(*args, **kwargs)
Overloaded function.
__getitem__(self: imfusion._bindings.DataComponentList, index: int) -> object
__getitem__(self: imfusion._bindings.DataComponentList, indices: list[int]) -> list[object]
__getitem__(self: imfusion._bindings.DataComponentList, slice: slice) -> list[object]
__getitem__(self: imfusion._bindings.DataComponentList, id: str) -> object
- add(*args, **kwargs)
Overloaded function.
add(self: imfusion._bindings.DataComponentList, component: imfusion._bindings.DataComponent) -> object
Adds the component to the component list and returns a reference to the copy.
add(self: imfusion._bindings.DataComponentList, arg0: imfusion._bindings.ImageInfoDataComponent) -> imfusion._bindings.DataComponentBase
Adds a copy of the component to the component list and returns a reference to the copy.
add(self: imfusion._bindings.DataComponentList, arg0: imfusion._bindings.DisplayOptions2d) -> imfusion._bindings.DataComponentBase
Adds a copy of the component to the component list and returns a reference to the copy.
add(self: imfusion._bindings.DataComponentList, arg0: imfusion._bindings.DisplayOptions3d) -> imfusion._bindings.DataComponentBase
Adds a copy of the component to the component list and returns a reference to the copy.
add(self: imfusion._bindings.DataComponentList, arg0: imfusion._bindings.TransformationStashDataComponent) -> imfusion._bindings.DataComponentBase
Adds a copy of the component to the component list and returns a reference to the copy.
add(self: imfusion._bindings.DataComponentList, arg0: imfusion._bindings.DataSourceComponent) -> imfusion._bindings.DataComponentBase
Adds a copy of the component to the component list and returns a reference to the copy.
add(self: imfusion._bindings.DataComponentList, arg0: imfusion._bindings.LabelDataComponent) -> imfusion._bindings.DataComponentBase
Adds a copy of the component to the component list and returns a reference to the copy.
add(self: imfusion._bindings.DataComponentList, arg0: imfusion._bindings.DatasetLicenseComponent) -> imfusion._bindings.DataComponentBase
Adds a copy of the component to the component list and returns a reference to the copy.
add(self: imfusion._bindings.DataComponentList, arg0: imfusion._bindings.RealWorldMappingDataComponent) -> imfusion._bindings.DataComponentBase
Adds a copy of the component to the component list and returns a reference to the copy.
add(self: imfusion._bindings.DataComponentList, arg0: imfusion.dicom.GeneralEquipmentModuleDataComponent) -> imfusion._bindings.DataComponentBase
Adds a copy of the component to the component list and returns a reference to the copy.
add(self: imfusion._bindings.DataComponentList, arg0: imfusion.dicom.SourceInfoComponent) -> imfusion._bindings.DataComponentBase
Adds a copy of the component to the component list and returns a reference to the copy.
add(self: imfusion._bindings.DataComponentList, arg0: imfusion.dicom.ReferencedInstancesComponent) -> imfusion._bindings.DataComponentBase
Adds a copy of the component to the component list and returns a reference to the copy.
add(self: imfusion._bindings.DataComponentList, arg0: imfusion.dicom.RTStructureDataComponent) -> imfusion._bindings.DataComponentBase
Adds a copy of the component to the component list and returns a reference to the copy.
add(self: imfusion._bindings.DataComponentList, arg0: imfusion.machinelearning._bindings.TargetTag) -> imfusion._bindings.DataComponentBase
Adds a copy of the component to the component list and returns a reference to the copy.
add(self: imfusion._bindings.DataComponentList, arg0: imfusion.machinelearning._bindings.ProcessingRecordComponent) -> imfusion._bindings.DataComponentBase
Adds a copy of the component to the component list and returns a reference to the copy.
add(self: imfusion._bindings.DataComponentList, arg0: imfusion.ReferenceImageDataComponent) -> imfusion._bindings.DataComponentBase
Adds a copy of the component to the component list and returns a reference to the copy.
- property data_source
- property dataset_license
- property display_options_2d
- property display_options_3d
- property general_equipment_module
- property image_info
- property label
- property processing_record
- property real_world_mapping
- property reference_image
- property referenced_instances
- property rt_structure
- property source_info
- property target_tag
- property transformation_stash
- class imfusion.DataList(*args, **kwargs)
Bases:
pybind11_object
List of Data. Is implicitly converted from and to regular Python lists.
Deprecated since version 2.15: Use a regular
list
instead.Overloaded function.
__init__(self: imfusion._bindings.DataList) -> None
__init__(self: imfusion._bindings.DataList, list: list) -> None
- __getitem__(*args, **kwargs)
Overloaded function.
__getitem__(self: imfusion._bindings.DataList, index: int) -> imfusion._bindings.Data
__getitem__(self: imfusion._bindings.DataList, indices: list[int]) -> list[imfusion._bindings.Data]
__getitem__(self: imfusion._bindings.DataList, slice: slice) -> list[imfusion._bindings.Data]
- class imfusion.DataModel
Bases:
pybind11_object
The DataModel instance holds all datasets of an ApplicationController.
- __getitem__(*args, **kwargs)
Overloaded function.
__getitem__(self: imfusion._bindings.DataModel, index: int) -> imfusion._bindings.Data
__getitem__(self: imfusion._bindings.DataModel, indices: list[int]) -> list[imfusion._bindings.Data]
__getitem__(self: imfusion._bindings.DataModel, slice: slice) -> list[imfusion._bindings.Data]
- add(*args, **kwargs)
Overloaded function.
add(self: imfusion._bindings.DataModel, data: imfusion._bindings.Data, name: str = ‘’) -> imfusion._bindings.Data
Add data to the model. The data will be copied and a reference to the copy is returned. If the data cannot be added, a
ValueError
is raised.add(self: imfusion._bindings.DataModel, data_list: list[imfusion._bindings.Data]) -> list
Add multiple pieces of data to the model. The data will be copied and a reference to the copy is returned. If the data cannot be added, a
ValueError
is raised.
- create_group(self: DataModel, arg0: DataList) DataGroup
Groups a list of Data in the model. Only Data that is already part of the model can be grouped.
- get_common_parent(self: DataModel, data_list: DataList) DataGroup
Return the most common parent of all given Data
- get_parent(self: DataModel, data: Data) DataGroup
Return the parent DataGroup of the given Data or None if it is not part of the model. For top-level data this function will return
get_root_node()
.
- index(self: DataModel, data: Data) int
Return index of data. The index is depth-first for all groups.
- remove(self: DataModel, data: Data) None
Remove and delete data from the model. Afterwards data must not be reference anymore!
- property root_node
Return the parent DataGroup of the given Data or None if it does not have a parent
- property size
Return the total amount of data in the model
- class imfusion.DataSourceComponent
Bases:
DataComponentBase
- class DataSourceInfo(self: DataSourceInfo, arg0: str, arg1: str, arg2: Properties, arg3: int, arg4: list[DataSourceInfo])
Bases:
Configurable
- update(self: DataSourceInfo, arg0: DataSourceInfo) None
- property filename
- property history
- property index_in_file
- property io_algorithm_config
- property io_algorithm_name
- property filenames
- property sources
- class imfusion.DatasetLicenseComponent(*args, **kwargs)
Bases:
DataComponentBase
Overloaded function.
__init__(self: imfusion._bindings.DatasetLicenseComponent) -> None
__init__(self: imfusion._bindings.DatasetLicenseComponent, infos: list[imfusion._bindings.DatasetLicenseComponent.DatasetInfo]) -> None
- class DatasetInfo(*args, **kwargs)
Bases:
pybind11_object
Overloaded function.
__init__(self: imfusion._bindings.DatasetLicenseComponent.DatasetInfo) -> None
__init__(self: imfusion._bindings.DatasetLicenseComponent.DatasetInfo, name: str, authors: str, website: str, license: str, attribution_required: bool, commercial_use_allowed: bool) -> None
- property attribution_required
- property authors
- property commercial_use_allowed
- property license
- property name
- property website
- infos(self: DatasetLicenseComponent) list[DatasetInfo]
- class imfusion.Deformation
Bases:
pybind11_object
- configuration(self: Deformation) Properties
- configure(self: Deformation, properties: Properties) None
- displace_point(self: Deformation, at: ndarray[numpy.float64[3, 1]]) ndarray[numpy.float64[3, 1]]
- displace_points(self: Deformation, at: list[ndarray[numpy.float64[3, 1]]]) list[ndarray[numpy.float64[3, 1]]]
- displacement(*args, **kwargs)
Overloaded function.
displacement(self: imfusion._bindings.Deformation, at: numpy.ndarray[numpy.float64[3, 1]]) -> numpy.ndarray[numpy.float64[3, 1]]
displacement(self: imfusion._bindings.Deformation, at: numpy.ndarray[numpy.float64[2, 1]]) -> numpy.ndarray[numpy.float64[3, 1]]
displacement(self: imfusion._bindings.Deformation, at: list[numpy.ndarray[numpy.float64[3, 1]]]) -> list[numpy.ndarray[numpy.float64[3, 1]]]
- class imfusion.DisplayOptions2d(self: DisplayOptions2d, arg0: Data)
Bases:
DataComponentBase
- property gamma
- property invert
- property level
- property window
- class imfusion.DisplayOptions3d(self: DisplayOptions3d, arg0: Data)
Bases:
DataComponentBase
- property alpha
- property invert
- property level
- property window
- class imfusion.ExplicitIntensityMask(self: ExplicitIntensityMask, ref_image: SharedImage, mask_image: SharedImage)
Bases:
Mask
Combination of an ExplicitMask and an IntensityMask.
- property border_clamp
If true, set sampler wrapping mode to
CLAMP_TO_BORDER
(default). If false, set toCLAMP_TO_EDGE
.
- property border_color
Border color (normalized for integer images)
- property intensity_range
Range of allowed pixel values
- class imfusion.ExplicitMask(*args, **kwargs)
Bases:
Mask
Mask holding an individual mask value for every pixel.
Overloaded function.
__init__(self: imfusion._bindings.ExplicitMask, width: int, height: int, slices: int, initial: int = 0) -> None
__init__(self: imfusion._bindings.ExplicitMask, dimensions: numpy.ndarray[numpy.int32[3, 1]], initial: int = 0) -> None
__init__(self: imfusion._bindings.ExplicitMask, mask_image: imfusion._bindings.MemImage) -> None
- mask_image(self: ExplicitMask) SharedImage
Returns a copy of the mask image held by the mask.
- class imfusion.FrameworkInfo
Bases:
pybind11_object
Provides general information about the framework.
- property license
- property opengl
- property plugins
- class imfusion.FreeFormDeformation
Bases:
Deformation
- configuration(self: FreeFormDeformation) Properties
- configure(self: FreeFormDeformation, arg0: Properties) None
- control_points(self: FreeFormDeformation) list[ndarray[numpy.float64[3, 1]]]
Get current control point locations (including displacement)
- property displacements
Displacement in mm of all control points
- property grid_spacing
Spacing of the control point grid
- property grid_transformation
Transformation matrix of the control point grid
- property subdivisions
Subdivisions of the control point grid
- class imfusion.GlPlatformInfo
Bases:
pybind11_object
Provides information about the underlying OpenGL driver.
- property extensions
- property renderer
- property vendor
- property version
- class imfusion.ImageDescriptor(*args, **kwargs)
Bases:
pybind11_object
Struct describing the essential properties of an image.
The ImFusion framework distinguishes two main image pixel value domains, which are indicated by the shift and scale parameters of this image descriptor:
Original pixel value domain: Pixel values are the same as in their original source (e.g. when loaded from a file). Same as the storage pixel value domain if the image’s scale is 1 and the shift is 0
Storage pixel value domain: Pixel values as they are stored in a MemImage. The user may decide to apply such a rescaling in order to better use the available limits of the underlying type.
The following conversion rules apply:
OV = (SV / scale) - shift
SV = (OV + shift) * scale
Overloaded function.
__init__(self: imfusion._bindings.ImageDescriptor) -> None
__init__(self: imfusion._bindings.ImageDescriptor, type: imfusion._bindings.PixelType, dimensions: numpy.ndarray[numpy.int32[3, 1]], channels: int = 1) -> None
__init__(self: imfusion._bindings.ImageDescriptor, type: imfusion._bindings.PixelType, width: int, height: int, slices: int = 1, channels: int = 1) -> None
- configure(self: ImageDescriptor, properties: Properties) None
Deserialize an image descriptor from Properties
- coord(self: ImageDescriptor, index: int) ndarray[numpy.int32[4, 1]]
Return the pixel/voxel coordinate (x,y,z,c) for a given index
- has_index(self: ImageDescriptor, x: int, y: int, z: int = 0, c: int = 0) int
Return true if the pixel at (x,y,z) exists, false otherwise
- image_to_pixel(self: ImageDescriptor, world: ndarray[numpy.float64[3, 1]]) ndarray[numpy.float64[3, 1]]
Convert 3D image coordinates to pixel/voxel position
- index(self: ImageDescriptor, x: int, y: int, z: int = 0, c: int = 0) int
Return a linear memory index for a pixel or voxel
- is_compatible(self: ImageDescriptor, other: ImageDescriptor, ignore_type: bool = False, ignore_3D: bool = False, ignore_channels: bool = False, ignore_spacing: bool = True) bool
Convenience function to perform partial comparison of two image descriptors. Two descriptors are compatible if their width and height, and optionally number of slices, number of channels and type are the same
- is_valid(self: ImageDescriptor) bool
Return if the descriptor is valid (a size of one is allowed)
- original_to_storage(self: ImageDescriptor, value: float) float
Apply the image’s shift and scale in order to convert a value from original pixel value domain to storage pixel value domain
- pixel_to_image(self: ImageDescriptor, pixel: ndarray[numpy.float64[3, 1]]) ndarray[numpy.float64[3, 1]]
Convert a 3D pixel/voxel position to image coordinates
- set_dimensions(self: ImageDescriptor, dimensions: ndarray[numpy.int32[3, 1]], channels: int = 0) None
Convenience function for specifying the image dimensions and channels at once. If
channels
is 0, the number of channels will remain unchanged
- set_spacing(self: ImageDescriptor, spacing: ndarray[numpy.float64[3, 1]], is_metric: bool) None
Convenience function for specifying spacing and metric flag at the same time
- storage_to_original(self: ImageDescriptor, value: float) float
Apply the image’s shift and scale in order to convert a value from storage pixel value domain to original pixel value domain
- property byte_size
Return the size of the image in bytes
- property channels
- property configuration
Serialize an image descriptor to Properties
- property dimension
- property dimensions
- property extent
- property height
- property image_to_pixel_matrix
Return a 4x4 matrix to transform from image space to pixel space
- property image_to_texture_matrix
Return a 4x4 matrix to transform from image space to texture space
- property is_metric
- property pixel_to_image_matrix
Return a 4x4 matrix to transform from pixel space to image space
- property pixel_type
- property scale
- property shift
- property size
Return the size (number of elements) of the image
- property slices
- property spacing
Access the image descriptor spacing. When setting the spacing, it is always assumed that the given spacing is metric. If you want to specify a non-metric spacing, use
desc.set_spacing(new_spacing, is_metric=False)
- property texture_to_image_matrix
Return a 4x4 matrix to transform from texture space to image space
- property type_size
Return the nominal size in bytes of the current component type, zero if unknown
- property width
- class imfusion.ImageDescriptorWorld(self: ImageDescriptorWorld, descriptor: ImageDescriptor, matrix_to_world: ndarray[numpy.float64[4, 4]])
Bases:
pybind11_object
Convenience struct extending an ImageDescriptor to also include a matrix describing the image orientation in world coordinates.
This struct can be useful for describing the geometrical properties of an image without need to hold the (heavy) image content. As such it can be used for representing reference geometries (see
ImageResamplingAlgorithm
), or for one-line creation of a new SharedImage.- image_to_pixel(self: ImageDescriptorWorld, world: ndarray[numpy.float64[3, 1]]) ndarray[numpy.float64[3, 1]]
Convert 3D image coordinates to pixel/voxel position
- is_spatially_compatible(self: ImageDescriptorWorld, other: ImageDescriptorWorld) bool
Convenience function to compare two image world descriptors (for instance to know whether a resampling is necessary). Two descriptors are compatible if their dimensions, matrix and spacing are identical.
- pixel_to_image(self: ImageDescriptorWorld, pixel: ndarray[numpy.float64[3, 1]]) ndarray[numpy.float64[3, 1]]
Convert a 3D pixel/voxel position to image coordinates
- pixel_to_world(self: ImageDescriptorWorld, pixel: ndarray[numpy.float64[3, 1]]) ndarray[numpy.float64[3, 1]]
Convert a 3D pixel/voxel position to world coordinates
- world_to_pixel(self: ImageDescriptorWorld, world: ndarray[numpy.float64[3, 1]]) ndarray[numpy.float64[3, 1]]
Convert 3D world coordinates to pixel/voxel position
- property descriptor
- property image_to_pixel_matrix
Return a 4x4 matrix to transform from image space to pixel space
- property matrix_from_world
- property matrix_to_world
- property pixel_to_image_matrix
Return a 4x4 matrix to transform from pixel space to image space
- property pixel_to_texture_matrix
Return a 4x4 matrix to transform from image space to texture space
- property pixel_to_world_matrix
Return a 4x4 matrix to transform from pixel space to world space
- property texture_to_pixel_matrix
Return a 4x4 matrix to transform from texture space to image space
- property texture_to_world_matrix
Return a 4x4 matrix to transform from texture space to world space
- property world_to_pixel_matrix
Return a 4x4 matrix to transform from world space to pixel space
- property world_to_texture_matrix
Return a 4x4 matrix to transform from world space to texture space
- class imfusion.ImageInfoDataComponent(self: ImageInfoDataComponent)
Bases:
DataComponentBase
DataComponent storing general information on the image origin.
Modeled after the DICOM patient-study-series hierarchy, it stores information on the patient, study and series the data set belongs to.
- class AnatomicalOrientationType(self: AnatomicalOrientationType, value: int)
Bases:
pybind11_object
The anatomical orientation type used in Instances generated by this equipment.
Members:
UNKNOWN
BIPED
QUADRUPED
- BIPED = <AnatomicalOrientationType.BIPED: 1>
- QUADRUPED = <AnatomicalOrientationType.QUADRUPED: 2>
- UNKNOWN = <AnatomicalOrientationType.UNKNOWN: 0>
- property name
- property value
- class Laterality(self: Laterality, value: int)
Bases:
pybind11_object
Laterality of (paired) body part examined
Members:
UNKNOWN
LEFT
RIGHT
- LEFT = <Laterality.LEFT: 1>
- RIGHT = <Laterality.RIGHT: 2>
- UNKNOWN = <Laterality.UNKNOWN: 0>
- property name
- property value
- class PatientSex(self: PatientSex, value: int)
Bases:
pybind11_object
Gender of the patient
Members:
UNKNOWN
MALE
FEMALE
OTHER
- FEMALE = <PatientSex.FEMALE: 2>
- MALE = <PatientSex.MALE: 1>
- OTHER = <PatientSex.OTHER: 3>
- UNKNOWN = <PatientSex.UNKNOWN: 0>
- property name
- property value
- property frame_of_reference_uid
Uniquely identifies the Frame of Reference for a Series. Multiple Series within a Study may share a Frame of Reference UID.
- property laterality
Laterality of (paired) body part examined
- property modality
DICOM modality string specifying the method used to create this series
- property orientation_type
DICOM Anatomical Orientation Type
- property patient_birth_date
Patient date of birth in yyyyMMdd format
- property patient_comment
Additional information about the Patient
- property patient_id
DICOM Patient ID
- property patient_name
Patient name
- property patient_position
Specifies position of the Patient relative to the imaging equipment.
- property patient_sex
Patient sex
- property photometric_interpretation
Specifies the intended interpretation of the pixel data (e.g. RGB, HSV, …).
- property responsible_person
Name of person with medical or welfare decision making authority for the Patient.
- property series_date
Series date in yyyyMMdd format
- property series_description
Series description
- property series_instance_uid
Unique identifier of the Series
- property series_number
DICOM Series number. The value of this attribute should be unique for all Series in a Study created on the same equipment.
- property series_time
Series time in HHmmss format
- property series_time_exact
Series time in microseconds. 0 if the original series time was empty.
- property study_date
Study date in yyyyMMdd format
- property study_description
Study description
- property study_id
DICOM Study ID
- property study_instance_uid
Unique identifier for the Study
- property study_time
Study time in HHmmss format, optionally with time zone offset &ZZXX
- property study_time_exact
Study time in microseconds. 0 if the original study time was empty.
- property study_timezone
Study time zone abbreviation
- class imfusion.ImageResamplingAlgorithm(*args, **kwargs)
Bases:
BaseAlgorithm
Algorithm for resampling an image to a target dimension or resolution, optionally with respect to another image.
If a reference image is not provided the size of the output can be either explicitly specified, or implicitly determined by setting a target spacing, binning or relative size w.r.t. the input (in percentage). Only one of these strategies can be active at a time, as specified by the resamplingMode field. The value of the other target fields will be ignored. The algorithm offers convenience methods to jointly update the value of a target field and change the resampling mode accordingly.
In case you provide a reference image it will its pixel grid (dimensions, spacing, pose matrix) for the output. However, the pixel type as well as shift/scale will remain the same as in the input image.
The algorithm supports Linear and Nearest interpolation modes. In the Linear case (default), when accessing the input image at a fractional coordinate, the obtained value will be computed by linearly interpolating between the closest pixels/voxels. In the Nearest case, the value of the closest pixel/voxel will be used instead.
Furthermore, multiple reduction modes are also supported. In contrast to the interpolation mode, which affects how the value of the input image at a given (potentially fractional) coordinate is extracted, this determines what happens when multiple input pixels/voxels contribute to the value of a single output pixel/voxel. In Nearest mode, the value of the closest input pixel/voxel is used as-is. Alternatively, the Minimum, Maximum or Average value of the neighboring pixel/voxels can be used.
By default, the image will be modified in-place; a new one can be created instead by changing the value of the createNewImage parameter.
By default, the resulting image will have an altered physical extent, since the original extent may not be divisible by the target spacing. The algorithm can modify the target spacing to exactly maintain the physical extent, by toggling the preserveExtent parameter.
If the keepZeroValues parameter is set to true, the input pixels/voxels having zero value will not be modified by the resampling process.
Overloaded function.
__init__(self: imfusion._bindings.ImageResamplingAlgorithm, input_images: imfusion._bindings.SharedImageSet, reference_images: imfusion._bindings.SharedImageSet = None) -> None
__init__(self: imfusion._bindings.ImageResamplingAlgorithm, input_images: imfusion._bindings.SharedImageSet, reference_world_descriptors: list[imfusion._bindings.ImageDescriptorWorld]) -> None
- class ResamplingMode(self: ResamplingMode, value: int)
Bases:
pybind11_object
Members:
TARGET_DIM
TARGET_PERCENT
TARGET_SPACING
TARGET_BINNING
- TARGET_BINNING = <ResamplingMode.TARGET_BINNING: 3>
- TARGET_DIM = <ResamplingMode.TARGET_DIM: 0>
- TARGET_PERCENT = <ResamplingMode.TARGET_PERCENT: 1>
- TARGET_SPACING = <ResamplingMode.TARGET_SPACING: 2>
- property name
- property value
- resampling_needed(self: ImageResamplingAlgorithm, frame: int = -1) bool
Return whether resampling is needed or the specified settings result in the same image size and spacing
- set_input(*args, **kwargs)
Overloaded function.
set_input(self: imfusion._bindings.ImageResamplingAlgorithm, new_input_images: imfusion._bindings.SharedImageSet, new_reference_images: imfusion._bindings.SharedImageSet, reconfigure_from_new_data: bool) -> None
Replaces the input of the algorithm. If reconfigureFromNewData is true, the algorithm reconfigures itself based on meta data of the new input
set_input(self: imfusion._bindings.ImageResamplingAlgorithm, new_input_images: imfusion._bindings.SharedImageSet, new_reference_world_descriptors: list[imfusion._bindings.ImageDescriptorWorld], reconfigure_from_new_data: bool) -> None
Replaces the input of the algorithm. If reconfigureFromNewData is true, the algorithm reconfigures itself based on meta data of the new input
- set_target_min_spacing(*args, **kwargs)
Overloaded function.
set_target_min_spacing(self: imfusion._bindings.ImageResamplingAlgorithm, min_spacing: float) -> bool
Set the target spacing with the spacing of the input image, replacing the value in each dimension with the maximum between the original and the provided value.
- Parameters:
min_spacing – the minimum value that the target spacing should have in each direction
- Returns:
True if the final target spacing is different than the input image spacing
set_target_min_spacing(self: imfusion._bindings.ImageResamplingAlgorithm, min_spacing: numpy.ndarray[numpy.float64[3, 1]]) -> bool
Set the target spacing with the spacing of the input image, replacing the value in each dimension with the maximum between the original and the provided value.
- Parameters:
min_spacing – the minimum value that the target spacing should have in each direction
- Returns:
True if the final target spacing is different than the input image spacing
- TARGET_BINNING = <ResamplingMode.TARGET_BINNING: 3>
- TARGET_DIM = <ResamplingMode.TARGET_DIM: 0>
- TARGET_PERCENT = <ResamplingMode.TARGET_PERCENT: 1>
- TARGET_SPACING = <ResamplingMode.TARGET_SPACING: 2>
- property clone_deformation
Whether to clone deformation from original image before attaching to result
- property create_new_image
Whether to compute the result in-place or in a newly allocated image
- property force_cpu
Whether to force the computation on the CPU
- property interpolation_mode
Mode for image interpolation
- property keep_zero_values
Whether to update the target spacing to keep exactly the physical dimensions of the input image
- property preserve_extent
Whether to update the target spacing to keep exactly the physical dimensions of the input image
- property reduction_mode
Mode for image reduction (e.g. downsampling, resampling, binning)
- property resampling_mode
How the output image size should be obtained (explicit dimensions, percentage relative to the input image, …)
- property target_binning
How many pixels from the input image should be combined into an output pixel
- property target_dimensions
Target dimensions for the new image
- property target_percent
Target dimensions for the new image, relatively to the input one
- property target_spacing
Target spacing for the new image
- property verbose
Whether to enable advanced logging
- class imfusion.IntensityMask(*args, **kwargs)
Bases:
Mask
Masks pixels with a specific value or values outside a specific range.
Overloaded function.
__init__(self: imfusion._bindings.IntensityMask, type: imfusion._bindings.PixelType, value: float = 0.0) -> None
__init__(self: imfusion._bindings.IntensityMask, image: imfusion._bindings.MemImage, value: float = 0.0) -> None
- property masked_value
Specific value that should be masked
- property masked_value_range
Half-open range
[min, max)
of allowed pixel values
- property type
- property use_range
Whether the mask should operate in range mode (true) or single-value mode (false)
- class imfusion.InterpolationMode(self: InterpolationMode, value: int)
Bases:
pybind11_object
Members:
NEAREST
LINEAR
- LINEAR = <InterpolationMode.LINEAR: 1>
- NEAREST = <InterpolationMode.NEAREST: 0>
- property name
- property value
- class imfusion.LabelDataComponent(self: LabelDataComponent, label_map: SharedImageSet = None)
Bases:
pybind11_object
Stores metadata for a label map, supporting up to 255 labels.
Creates a LabelDataComponent. If a label map of type uint8 is provided, detects labels in the label map.
- class LabelConfig(self: LabelConfig, name: str = '', color: ndarray[numpy.float64[4, 1]] = array([0., 0., 0., 0.]), is_visible2d: bool = True, is_visible3d: bool = True)
Bases:
pybind11_object
Encapsulates metadata for a label value in a label map.
Constructor for LabelConfig.
- Parameters:
name – Name of the label.
color – RGBA color used for rendering the label.
is_visible2d – Visibility flag for 2D/MPR views.
is_visible3d – Visibility flag for 3D views.
- property color
RGBA color used for rendering the label. Values should be in the range [0, 1].
- property is_visible2d
Visibility flag for 2D/MPR views.
- property is_visible3d
Visibility flag for 3D views.
- property name
Name of the label.
- property segmentation_algorithm_name
Name of the algorithm used to generate the segmentation.
- property segmentation_algorithm_type
Type of algorithm used to generate the segmentation.
- property snomed_category_code_meaning
Human-readable meaning of the category code.
- property snomed_category_code_value
SNOMED CT code for the category this label represents.
- property snomed_type_code_meaning
Human-readable meaning of the type code.
- property snomed_type_code_value
SNOMED CT code for the type this label represents.
- class SegmentationAlgorithmType(self: SegmentationAlgorithmType, value: int)
Bases:
pybind11_object
Members:
UNKNOWN
AUTOMATIC
SEMI_AUTOMATIC
MANUAL
- AUTOMATIC = <SegmentationAlgorithmType.AUTOMATIC: 1>
- MANUAL = <SegmentationAlgorithmType.MANUAL: 3>
- SEMI_AUTOMATIC = <SegmentationAlgorithmType.SEMI_AUTOMATIC: 2>
- UNKNOWN = <SegmentationAlgorithmType.UNKNOWN: 0>
- property name
- property value
- detect_labels(self: LabelDataComponent, image: SharedImageSet) None
Detects labels present in an image of type uint8 and creates configurations for non-existing labels using default configurations.
- has_label(self: LabelDataComponent, pixel_value: int) bool
Checks if a label configuration exists for a pixel value.
- label_config(self: LabelDataComponent, pixel_value: int) LabelConfig | None
Gets label configuration for a pixel value.
- label_configs(self: LabelDataComponent) dict[int, LabelConfig]
Returns known label configurations.
- remove_label(self: LabelDataComponent, pixel_value: int) None
Removes label configuration for a pixel value.
- remove_unused_labels(self: LabelDataComponent, image: SharedImageSet) None
Removes configurations for non-existing labels in an image.
- set_default_label_config(self: LabelDataComponent, pixel_value: int) None
Sets default label configuration for a pixel value.
- set_label_config(self: LabelDataComponent, pixel_value: int, config: LabelConfig) None
Sets label configuration for a pixel value.
- set_label_configs(self: LabelDataComponent, configs: dict[int, LabelConfig]) None
Sets known label configurations from a dictionary mapping pixel values to LabelConfig objects.
- AUTOMATIC = <SegmentationAlgorithmType.AUTOMATIC: 1>
- MANUAL = <SegmentationAlgorithmType.MANUAL: 3>
- SEMI_AUTOMATIC = <SegmentationAlgorithmType.SEMI_AUTOMATIC: 2>
- UNKNOWN = <SegmentationAlgorithmType.UNKNOWN: 0>
- class imfusion.LayoutMode(self: LayoutMode, value: int)
Bases:
pybind11_object
Members:
LAYOUT_ROWS
LAYOUT_FOCUS_PLUS_STACK
LAYOUT_FOCUS_PLUS_ROWS
LAYOUT_SIDE_BY_SIDE
LAYOUT_CUSTOM
- LAYOUT_CUSTOM = <LayoutMode.LAYOUT_CUSTOM: 100>
- LAYOUT_FOCUS_PLUS_ROWS = <LayoutMode.LAYOUT_FOCUS_PLUS_ROWS: 2>
- LAYOUT_FOCUS_PLUS_STACK = <LayoutMode.LAYOUT_FOCUS_PLUS_STACK: 1>
- LAYOUT_ROWS = <LayoutMode.LAYOUT_ROWS: 0>
- LAYOUT_SIDE_BY_SIDE = <LayoutMode.LAYOUT_SIDE_BY_SIDE: 3>
- property name
- property value
- class imfusion.LicenseInfo
Bases:
pybind11_object
Provides information about the currently used license.
- property expiration_date
Date until the license is valid in ISO format or None if the license won’t expire.
- property key
- class imfusion.Mask
Bases:
pybind11_object
Base interface for implementing polymorphic image masks.
- class CreateOption(self: CreateOption, value: int)
Bases:
pybind11_object
Enumeration of available behavior for Mask::create_explicit_mask().
Members:
DEEP_COPY
SHALLOW_COPY_IF_POSSIBLE
- DEEP_COPY = <CreateOption.DEEP_COPY: 0>
- SHALLOW_COPY_IF_POSSIBLE = <CreateOption.SHALLOW_COPY_IF_POSSIBLE: 1>
- property name
- property value
- create_explicit_mask(self: imfusion._bindings.Mask, image: imfusion._bindings.SharedImage, create_option: imfusion._bindings.Mask.CreateOption = <CreateOption.DEEP_COPY: 0>) MemImage
Creates an explicit mask representation of this mask for a given image.
- is_compatible(self: Mask, arg0: SharedImage) bool
Returns
True
if the mask can be used with the given image orFalse
otherwise.
- mask_value(*args, **kwargs)
Overloaded function.
mask_value(self: imfusion._bindings.Mask, coord: numpy.ndarray[numpy.int32[3, 1]], color: numpy.ndarray[numpy.float32[4, 1]]) -> int
Returns 0 if the given pixel is outside the mask (i.e. invisible/to be ignored) or a non-zero value if it is inside the mask (i.e. visible/to be considered).
mask_value(self: imfusion._bindings.Mask, coord: numpy.ndarray[numpy.int32[3, 1]], value: float) -> int
Returns 0 if the given pixel is outside the mask (i.e. invisible/to be ignored) or a non-zero value if it is inside the mask (i.e. visible/to be considered).
- DEEP_COPY = <CreateOption.DEEP_COPY: 0>
- SHALLOW_COPY_IF_POSSIBLE = <CreateOption.SHALLOW_COPY_IF_POSSIBLE: 1>
- property requires_pixel_value
Returns
True
if the mask_value() rely on the pixel value. If this method returnsFalse
, the mask_value() method can be safely used with only the coordinate.
- class imfusion.MemImage(*args, **kwargs)
Bases:
pybind11_object
A
MemImage
instance represents an image which resides in main memory.The
MemImage
class supports the Buffer Protocol. This means that the underlying buffer can be wrapped in e.g. numpy without a copy:>>> import numpy >>> mem = MemImage(Image.BYTE, 10, 10) >>> arr = numpy.array(mem, copy=False) >>> arr.fill(0) >>> numpy.sum(arr) 0
Be aware that most numpy operation create a copy of the data and don’t affect the original data:
>>> numpy.sum(numpy.add(arr, 1)) 100
>>> numpy.sum(arr) 0
To update the buffer of a
MemImage
, usenumpy.copyto
:>>> numpy.copyto(arr, numpy.add(arr, 1)) >>> numpy.sum(arr) 100
Alternatively use the
out
argument of certain numpy functions:>>> numpy.add(arr, 1, out=arr) array(...)
>>> numpy.sum(arr) 200
Overloaded function.
__init__(self: imfusion._bindings.MemImage, type: imfusion._bindings.PixelType, width: int, height: int, slices: int = 1, channels: int = 1) -> None
__init__(self: imfusion._bindings.MemImage, desc: imfusion._bindings.ImageDescriptor) -> None
Factory method to instantiate a MemImage from an ImageDescriptor. note This method does not initialize the underlying buffer
__init__(self: imfusion._bindings.MemImage, array: numpy.ndarray[numpy.int8], greyscale: bool = False) -> None
Create a
MemImage
from anumpy.array
.The array must be contiguous and must have between 2 and 4 dimensions. The dimensions are interpreted as (slices, height, width, channels). Missing dimensions are set to one. The color dimension must always be present even for greyscale image in which case it would be 1.
Use the optional
greyscale
argument to specify that the color dimensions is missing and the buffer should be interpreted as greyscale.The actual array data is copied into the
MemImage
.__init__(self: imfusion._bindings.MemImage, array: numpy.ndarray[numpy.uint8], greyscale: bool = False) -> None
__init__(self: imfusion._bindings.MemImage, array: numpy.ndarray[numpy.int16], greyscale: bool = False) -> None
__init__(self: imfusion._bindings.MemImage, array: numpy.ndarray[numpy.uint16], greyscale: bool = False) -> None
__init__(self: imfusion._bindings.MemImage, array: numpy.ndarray[numpy.int32], greyscale: bool = False) -> None
__init__(self: imfusion._bindings.MemImage, array: numpy.ndarray[numpy.uint32], greyscale: bool = False) -> None
__init__(self: imfusion._bindings.MemImage, array: numpy.ndarray[numpy.float32], greyscale: bool = False) -> None
__init__(self: imfusion._bindings.MemImage, array: numpy.ndarray[numpy.float64], greyscale: bool = False) -> None
- apply_shift_and_scale(arr)
Return a copy of the array with storage values converted to original values. The dtype of the returned array is always DOUBLE.
- astype(self: MemImage, image_type: object) MemImage
Create a copy of the current MemImage instance with the requested Image format.
This function accepts either: - an Image type (e.g. imfusion.Image.UINT); - most of the numpy’s dtypes (e.g. np.uint); - python’s float or int types.
If the requested Image format already matches the Image format of the current instance, then a clone of the current instance is returned.
- create_float(self: object, normalize: bool = True, calc_min_max: bool = True, apply_scale_shift: bool = False) object
- crop(self: MemImage, width: int, height: int, slices: int = -1, ox: int = -1, oy: int = -1, oz: int = -1) MemImage
- downsample(self: imfusion._bindings.MemImage, dx: int, dy: int, dz: int = 1, zero_mask: bool = False, reduction_mode: imfusion._bindings.ReductionMode = <ReductionMode.AVERAGE: 1>) MemImage
- image_to_pixel(self: MemImage, world: ndarray[numpy.float64[3, 1]]) ndarray[numpy.float64[3, 1]]
Convert a 3D image coordinate to a pixel position.
- numpy()
Convenience method for converting a MemImage or a SharedImage into a newly created numpy array with scale and shift already applied.
Shift and scale may determine a complex change of pixel type prior the conversion into numpy array:
as a first rule, even if the type of shift and scale is float, they will still be considered as integers if they are representing integers (e.g. a shift of 2.000 will be treated as 2);
if shift and scale are such that the pixel values range (determined by the pixel_type) would not be fitting into the pixel_type, e.g. a negative pixel value but the type is unsigned, then the pixel_type will be promoted into a signed type if possible, otherwise into a single precision floating point type;
if shift and scale are such that the pixel values range (determined by the pixel_type) would be fitting into a demoted pixel_type, e.g. the type is signed but the range of pixel values is unsigned, then the pixel_type will be demoted;
if shift and scale do not certainly determine that all the possible pixel values (in the range determined by the pixel_type) would become integers, then the pixel_type will be promoted into a single precision floating point type.
in any case, the returned numpy array will be returned with type up to 32-bit integers. If the integer type would require more bits, then the resulting pixel_type will be DOUBLE.
- Parameters:
self – instance of a MemImage or of a SharedImage
- Returns:
numpy.ndarray
- pad(*args, **kwargs)
Overloaded function.
pad(self: imfusion._bindings.MemImage, pad_lower_left_front: numpy.ndarray[numpy.int32[3, 1]], pad_upper_right_back: numpy.ndarray[numpy.int32[3, 1]], padding_mode: imfusion._bindings.PaddingMode, legacy_mirror_padding: bool = True) -> imfusion._bindings.MemImage
pad(self: imfusion._bindings.MemImage, padding_mode: tuple[int, int], pad_size_x: tuple[int, int], pad_size_y: tuple[int, int], pad_size_z: imfusion._bindings.PaddingMode, legacy_mirror_padding: bool = True) -> imfusion._bindings.MemImage
- pixel_to_image(self: MemImage, pixel: ndarray[numpy.float64[3, 1]]) ndarray[numpy.float64[3, 1]]
Convert a 3D pixel position to an image coordinate.
- range_threshold(self: MemImage, inside_range: bool, lower_value: float, upper_value: float, use_original: bool = True, replace_with: float = 0) MemImage
- resample(*args, **kwargs)
Overloaded function.
resample(self: imfusion._bindings.MemImage, spacing_adjustment: imfusion._bindings.SpacingMode, spacing: numpy.ndarray[numpy.float64[3, 1]], zero_mask: bool = False, reduction_mode: imfusion._bindings.ReductionMode = <ReductionMode.AVERAGE: 1>, interpolation_mode: imfusion._bindings.InterpolationMode = <InterpolationMode.LINEAR: 1>, allowed_dimension_change: bool = False) -> imfusion._bindings.MemImage
resample(self: imfusion._bindings.MemImage, dimensions: numpy.ndarray[numpy.int32[3, 1]], zero_mask: bool = False, reduction_mode: imfusion._bindings.ReductionMode = <ReductionMode.AVERAGE: 1>, interpolation_mode: imfusion._bindings.InterpolationMode = <InterpolationMode.LINEAR: 1>) -> imfusion._bindings.MemImage
- rotate(*args, **kwargs)
Overloaded function.
rotate(self: imfusion._bindings.MemImage, angle: int = 90, flip_dim: int = -1, axis: int = 2) -> imfusion._bindings.MemImage
rotate(self: imfusion._bindings.MemImage, rot: numpy.ndarray[numpy.float64[3, 3]], tolerance: float = 0.0) -> imfusion._bindings.MemImage
- threshold(self: MemImage, value: float, below: bool, apply_shift_scale: bool = True, merge_channels: bool = False, replace_with: float = 0) MemImage
- static zeros(desc: ImageDescriptor) MemImage
Factory method to create a zero-initialized image
- property channels
- property dimension
- property dimensions
- property extent
- property height
- property image_to_pixel_matrix
- property metric
- property ndim
- property pixel_to_image_matrix
- property scale
- property shape
Return a numpy compatible shape descripting the dimensions of this image.
The returned tuple has 4 entries: slices, height, width, channels
- property shift
- property slices
- property spacing
- property type
- property width
- class imfusion.Mesh(*args, **kwargs)
Bases:
Data
Overloaded function.
__init__(self: imfusion._bindings.Mesh, mesh: imfusion._bindings.Mesh) -> None
__init__(self: imfusion._bindings.Mesh, name: str = ‘’) -> None
- set_halfedge_color(*args, **kwargs)
Overloaded function.
set_halfedge_color(self: imfusion._bindings.Mesh, vertex_index: int, face_index: int, color: numpy.ndarray[numpy.float32[4, 1]]) -> None
set_halfedge_color(self: imfusion._bindings.Mesh, vertex_index: int, face_index: int, color: numpy.ndarray[numpy.float32[3, 1]], alpha: float) -> None
- set_halfedge_normal(self: Mesh, vertex_index: int, face_index: int, normal: ndarray[numpy.float64[3, 1]]) None
- set_vertex_color(*args, **kwargs)
Overloaded function.
set_vertex_color(self: imfusion._bindings.Mesh, index: int, color: numpy.ndarray[numpy.float32[4, 1]]) -> None
set_vertex_color(self: imfusion._bindings.Mesh, index: int, color: numpy.ndarray[numpy.float32[3, 1]], alpha: float) -> None
- property center
- property extent
- property filename
- property has_halfedge_colors
- property has_halfedge_normals
- property has_vertex_colors
- property has_vertex_normals
- property number_of_faces
- property number_of_vertices
- class imfusion.Optimizer
Bases:
pybind11_object
Object for non-linear optimization.
The current bindings are work in progress and therefore limited. They are so far mostly meant to be used for changing an existing optimizer rather than creating one from scratch.
- class Mode(self: Mode, value: int)
Bases:
pybind11_object
Mode of operation when execute is called.
Members:
OPT : Standard optimization.
STUDY : Randomized study.
PLOT : Evaluate for 1D or 2D plot generation.
EVALUATE : Single evaluation.
- EVALUATE = <Mode.EVALUATE: 3>
- OPT = <Mode.OPT: 0>
- PLOT = <Mode.PLOT: 2>
- STUDY = <Mode.STUDY: 1>
- property name
- property value
- configuration(self: Optimizer) Properties
Retrieves the configuration of the object.
- configure(self: Optimizer, arg0: Properties) None
Configures the object.
- execute(self: Optimizer, x: list[float]) list[float]
Execute the optimization given a vector of initial parameters of full dimensionality.
- set_bounds(*args, **kwargs)
Overloaded function.
set_bounds(self: imfusion._bindings.Optimizer, bounds: float) -> None
Set the same symmetric bounds in all parameters. A value of zero disables the bounds.
set_bounds(self: imfusion._bindings.Optimizer, lower_bounds: float, upper_bounds: float) -> None
Set the same lower and upper bounds for all parameters.
set_bounds(self: imfusion._bindings.Optimizer, bounds: list[float]) -> None
Set individual symmetric bounds.
set_bounds(self: imfusion._bindings.Optimizer, lower_bounds: list[float], upper_bounds: list[float]) -> None
Set individual lower and upper bounds.
set_bounds(self: imfusion._bindings.Optimizer, bounds: list[tuple[float, float]]) -> None
Set individual lower and upper bounds as a list of pairs.
- set_logging_level(self: Optimizer, file_level: int | None = None, console_level: int | None = None) None
Set level of detail for logging to text file and the console. 0 = none (default), 1 = init/result, 2 = every evaluation, 3 = only final result after study.
- property abort_eval
Abort after a certain number of cost function evaluations.
- property abort_fun_tol
Abort if change in cost function value is becomes too small.
- property abort_fun_val
Abort if this function value is reached.
- property abort_par_tol
Abort if change in parameter values becomes too small.
- property abort_time
Abort after a certain elapsed number of seconds.
- property aborted
Whether the optimizer was aborted.
- property best_val
Return best cost function value.
- property dimension
Total number of parameters. The selection gets cleared when the dimension value is modified.
- property first_val
Return cost function value of first evaluation.
- property minimizing
Whether the optimizer has a loss function (that it should minimize) or an objective function (that it should maximize).
- property mode
Mode of operation when execute is called.
- property num_eval
Return number of cost function evaluations computed so far.
- property param_names
Names of the parameters.
- property selection
Selected parameters.
- property type
Type of optimizer (see doc/header).
- class imfusion.PaddingMode(*args, **kwargs)
Bases:
pybind11_object
Members:
CLAMP
MIRROR
ZERO
Overloaded function.
__init__(self: imfusion._bindings.PaddingMode, value: int) -> None
__init__(self: imfusion._bindings.PaddingMode, arg0: str) -> None
- CLAMP = <PaddingMode.CLAMP: 2>
- MIRROR = <PaddingMode.MIRROR: 1>
- ZERO = <PaddingMode.ZERO: 0>
- property name
- property value
- class imfusion.ParametricDeformation
Bases:
Deformation
- set_parameters(self: ParametricDeformation, parameters: list[float]) None
- class imfusion.PixelType(self: PixelType, value: int)
Bases:
pybind11_object
Members:
BYTE
UBYTE
SHORT
USHORT
INT
UINT
FLOAT
DOUBLE
HFLOAT
- BYTE = <PixelType.BYTE: 5120>
- DOUBLE = <PixelType.DOUBLE: 5130>
- FLOAT = <PixelType.FLOAT: 5126>
- HFLOAT = <PixelType.HFLOAT: 5131>
- INT = <PixelType.INT: 5124>
- SHORT = <PixelType.SHORT: 5122>
- UBYTE = <PixelType.UBYTE: 5121>
- UINT = <PixelType.UINT: 5125>
- USHORT = <PixelType.USHORT: 5123>
- property name
- property value
- class imfusion.PluginInfo
Bases:
pybind11_object
Provides information about a framework plugin.
- property name
- property path
- class imfusion.PointCloud(self: PointCloud, points: list[ndarray[numpy.float64[3, 1]]] = [], *, normals: list[ndarray[numpy.float64[3, 1]]] = [], colors: list[ndarray[numpy.float64[3, 1]]] = [])
Bases:
Data
Data structure representing a point cloud in 3d space. Each point can have an associated color and normal vector.
Constructs a point cloud with the specified points, normals and colors. If the number of colors / normals does not match the number of points, they will be ignored with a warning.
- Parameters:
points – Vertices of the point cloud.
normals – Normals of the point cloud. If the length does not match
points
,normals
will be dropped with a warning.colors – Colors (RGB) of the point cloud. If the length does not match
points
,colors
will be dropped with a warning.
- clone(self: PointCloud) PointCloud
Create a new point cloud by deep copying an all data from this instance.
- transform_point_cloud(self: PointCloud, transformation: ndarray[numpy.float64[4, 4]]) None
- property colors
- property has_normals
- property is_dense
- property normals
- property points
- property weights
- class imfusion.Properties(*args, **kwargs)
Bases:
pybind11_object
Container for arbitrary properties, internally stored as strings.
The bindings provide two interfaces: a C++-like one based on
param()
andset_param()
, and a more Pythonic interface using the[]
operator. Both interfaces are equivalent and interchangeable.Parameters can be set with the
set_param
method, e.g.:>>> p = Properties() >>> p.set_param('Spam', 5)
The ParamType will be set depending on the type of the value similar to C++. To retrieve a parameter, a value of the desired return type must be passed:
>>> spam = 0 >>> p.param('Spam', spam) 5
If the parameter doesn’t exists, the value of the second argument is returned:
>>> foo = 8 >>> p.param('Foo', foo) 8
The Properties object also exposes all its parameters as items, e.g. to add a new parameter just add a new key:
>>> p = Properties() >>> p['spam'] = 5
When using the dictionary-like syntax with the basic types (bool, int, float, str and list), the returned values are correctly typed:
>>> type(p['spam']) <class 'int'>
However, for matrix and vector types, the param() method has to be used which receives an extra variable of the same type that has to be returned:
>>> import numpy as np >>> np_array = np.ones(3) >>> p['foo'] = np_array >>> p.param('foo', np_array) array([1., 1., 1.])
In fact, the dictionary-like syntax would just return it as a string instead: >>> p[‘foo’] ‘1 1 1 ‘
Additionally, the attributes of parameters are available through the attributes() method:
>>> p.set_param_attributes('spam', 'max: 10') >>> p.param_attributes('spam') [('max', '10')]
A Properties object can be obtained from a dictionary:
>>> p = Properties({'spam': 5, 'eggs': True, 'sub': { 'eggs': False }}) >>> p['eggs'] True >>> p['sub']['eggs'] False
There are two possible but slightly different ways to convert a Properties instance into a dictionary. The first method is by dict() casting, which returns a dictionary made by nested Properties, the second method is by calling the asdict() method, which returns a dictionary expanding also the nested Properties instances:
>>> dict(p) {'spam': 5, 'eggs': True, 'sub': <imfusion._bindings.Properties object at 0x7fb0ac062b70>} >>> p.asdict() {'spam': 5, 'eggs': True, 'sub': {'eggs': False}}
Overloaded function.
__init__(self: imfusion._bindings.Properties, name: str = ‘’) -> None
__init__(self: imfusion._bindings.Properties, dictionary: dict) -> None
- class EnumStringParam(self: EnumStringParam, *, value: str, admitted_values: set[str])
Bases:
pybind11_object
Param that can assume a certain value among a set of
str
possibilities.- Parameters:
value – a choice among the set of
admitted_values
.admitted_values – set of
str
defining the available values.
- classmethod from_enum()
(cls: object, enum_member: object, take_enum_values: bool = False) -> imfusion._bindings.Properties.EnumStringParam
Construct an
EnumStringParam
automatically out of the provided instance of an enumeration class.- Parameters:
enum_member – a member of an enumeration class. The current
value
will be assigned to this argument, while theadmitted_values
will be automatically constructed from the members of the enumeration class.take_enum_values – is False, then the enumeration members are taken as values. If True, then the enumeration values are taken as values: please note that in this case all the enumeration values must be unique and of
str
type.
- to_enum(self: EnumStringParam, enum_type: object) object
Casts into the corresponding member of the
enum_type
type. It raises when this is not possible.- Parameters:
enum_type – the enumeration class into which to cast the current value. Please note that this enumeration class must be compatible, which means it must correspond to the set of
admitted_values
.
- property admitted_values
The current set of admitted values.
- property value
The current value that is assumed among the current set of admitted values.
- __getitem__(self: Properties, arg0: str) object
- __setitem__(*args, **kwargs)
Overloaded function.
__setitem__(self: imfusion._bindings.Properties, name: str, value: bool) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: int) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: float) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[3, 3]]) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[4, 4]]) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[3, 4]]) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float32[3, 3]]) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float32[4, 4]]) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[2, 1]]) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[3, 1]]) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[4, 1]]) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[5, 1]]) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float32[2, 1]]) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float32[3, 1]]) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float32[4, 1]]) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.int32[2, 1]]) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.int32[3, 1]]) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.int32[4, 1]]) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: str) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: os.PathLike) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: list[str]) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: list[os.PathLike]) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: list[bool]) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: list[int]) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: list[float]) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: list[numpy.ndarray[numpy.float64[2, 1]]]) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: list[numpy.ndarray[numpy.float64[3, 1]]]) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: list[numpy.ndarray[numpy.float64[4, 1]]]) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: imfusion._bindings.Properties.EnumStringParam) -> None
__setitem__(self: imfusion._bindings.Properties, name: str, value: object) -> None
- add_sub_properties(self: Properties, name: str) Properties
- asdict(self: Properties) dict
Return the Properties as a dict.
The dictionary values have the correct type when they are basic (bool, int, float, str and list), all other param types are returned with a str type. Subproperties are turned into nested dicts.
- clear(self: Properties) None
- copy_from(self: Properties, arg0: Properties) None
- get(self: Properties, key: str, default_value: object = None) object
- get_name(self: Properties) str
- items(self: Properties) list
- keys(self: Properties) list
- static load_from_json(path: str) Properties
- static load_from_xml(path: str) Properties
- param(*args, **kwargs)
Overloaded function.
param(self: imfusion._bindings.Properties, name: str, value: bool) -> bool
param(self: imfusion._bindings.Properties, name: str, value: int) -> int
param(self: imfusion._bindings.Properties, name: str, value: float) -> float
param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[3, 3]]) -> numpy.ndarray[numpy.float64[3, 3]]
param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[4, 4]]) -> numpy.ndarray[numpy.float64[4, 4]]
param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[3, 4]]) -> numpy.ndarray[numpy.float64[3, 4]]
param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float32[3, 3]]) -> numpy.ndarray[numpy.float32[3, 3]]
param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float32[4, 4]]) -> numpy.ndarray[numpy.float32[4, 4]]
param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[2, 1]]) -> numpy.ndarray[numpy.float64[2, 1]]
param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[3, 1]]) -> numpy.ndarray[numpy.float64[3, 1]]
param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[4, 1]]) -> numpy.ndarray[numpy.float64[4, 1]]
param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[5, 1]]) -> numpy.ndarray[numpy.float64[5, 1]]
param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float32[2, 1]]) -> numpy.ndarray[numpy.float32[2, 1]]
param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float32[3, 1]]) -> numpy.ndarray[numpy.float32[3, 1]]
param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float32[4, 1]]) -> numpy.ndarray[numpy.float32[4, 1]]
param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.int32[2, 1]]) -> numpy.ndarray[numpy.int32[2, 1]]
param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.int32[3, 1]]) -> numpy.ndarray[numpy.int32[3, 1]]
param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.int32[4, 1]]) -> numpy.ndarray[numpy.int32[4, 1]]
param(self: imfusion._bindings.Properties, name: str, value: str) -> str
param(self: imfusion._bindings.Properties, name: str, value: os.PathLike) -> os.PathLike
param(self: imfusion._bindings.Properties, name: str, value: list[str]) -> list[str]
param(self: imfusion._bindings.Properties, name: str, value: list[os.PathLike]) -> list[os.PathLike]
param(self: imfusion._bindings.Properties, name: str, value: list[bool]) -> list[bool]
param(self: imfusion._bindings.Properties, name: str, value: list[int]) -> list[int]
param(self: imfusion._bindings.Properties, name: str, value: list[float]) -> list[float]
param(self: imfusion._bindings.Properties, name: str, value: list[numpy.ndarray[numpy.float64[2, 1]]]) -> list[numpy.ndarray[numpy.float64[2, 1]]]
param(self: imfusion._bindings.Properties, name: str, value: list[numpy.ndarray[numpy.float64[3, 1]]]) -> list[numpy.ndarray[numpy.float64[3, 1]]]
param(self: imfusion._bindings.Properties, name: str, value: list[numpy.ndarray[numpy.float64[4, 1]]]) -> list[numpy.ndarray[numpy.float64[4, 1]]]
param(self: imfusion._bindings.Properties, name: str, value: imfusion._bindings.Properties.EnumStringParam) -> imfusion._bindings.Properties.EnumStringParam
- params(self: Properties) list[str]
Return a list of all param names.
Params inside sub-properties will be prefixed with the name of the sub-properties (e.g. ‘sub/var’). If
with_sub_params
is false, only the top-level params are returned.
- remove_param(self: Properties, name: str) None
- save_to_json(self: Properties, path: str) None
- save_to_xml(self: Properties, path: str) None
- set_name(self: Properties, name: str) None
- set_param(*args, **kwargs)
Overloaded function.
set_param(self: imfusion._bindings.Properties, name: str, value: bool) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: bool, default: bool) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: int) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: int, default: int) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: float) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: float, default: float) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[3, 3]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[3, 3]], default: numpy.ndarray[numpy.float64[3, 3]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[4, 4]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[4, 4]], default: numpy.ndarray[numpy.float64[4, 4]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[3, 4]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[3, 4]], default: numpy.ndarray[numpy.float64[3, 4]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float32[3, 3]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float32[3, 3]], default: numpy.ndarray[numpy.float32[3, 3]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float32[4, 4]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float32[4, 4]], default: numpy.ndarray[numpy.float32[4, 4]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[2, 1]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[2, 1]], default: numpy.ndarray[numpy.float64[2, 1]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[3, 1]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[3, 1]], default: numpy.ndarray[numpy.float64[3, 1]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[4, 1]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[4, 1]], default: numpy.ndarray[numpy.float64[4, 1]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[5, 1]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float64[5, 1]], default: numpy.ndarray[numpy.float64[5, 1]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float32[2, 1]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float32[2, 1]], default: numpy.ndarray[numpy.float32[2, 1]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float32[3, 1]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float32[3, 1]], default: numpy.ndarray[numpy.float32[3, 1]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float32[4, 1]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.float32[4, 1]], default: numpy.ndarray[numpy.float32[4, 1]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.int32[2, 1]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.int32[2, 1]], default: numpy.ndarray[numpy.int32[2, 1]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.int32[3, 1]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.int32[3, 1]], default: numpy.ndarray[numpy.int32[3, 1]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.int32[4, 1]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: numpy.ndarray[numpy.int32[4, 1]], default: numpy.ndarray[numpy.int32[4, 1]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: str) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: str, default: str) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: os.PathLike) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: os.PathLike, default: os.PathLike) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: list[str]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: list[str], default: list[str]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: list[os.PathLike]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: list[os.PathLike], default: list[os.PathLike]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: list[bool]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: list[bool], default: list[bool]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: list[int]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: list[int], default: list[int]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: list[float]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: list[float], default: list[float]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: list[numpy.ndarray[numpy.float64[2, 1]]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: list[numpy.ndarray[numpy.float64[2, 1]]], default: list[numpy.ndarray[numpy.float64[2, 1]]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: list[numpy.ndarray[numpy.float64[3, 1]]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: list[numpy.ndarray[numpy.float64[3, 1]]], default: list[numpy.ndarray[numpy.float64[3, 1]]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: list[numpy.ndarray[numpy.float64[4, 1]]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: list[numpy.ndarray[numpy.float64[4, 1]]], default: list[numpy.ndarray[numpy.float64[4, 1]]]) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: imfusion._bindings.Properties.EnumStringParam) -> None
set_param(self: imfusion._bindings.Properties, name: str, value: imfusion._bindings.Properties.EnumStringParam, default: imfusion._bindings.Properties.EnumStringParam) -> None
- set_param_attributes(self: Properties, name: str, attributes: str) None
- sub_properties(*args, **kwargs)
Overloaded function.
sub_properties(self: imfusion._bindings.Properties, name: str, create_if_doesnt_exist: bool = False) -> imfusion._bindings.Properties
sub_properties(self: imfusion._bindings.Properties) -> list[imfusion._bindings.Properties]
- sub_properties_all(self: Properties, name: str) list
- values(self: Properties) list
- class imfusion.RealWorldMappingDataComponent(self: RealWorldMappingDataComponent)
Bases:
DataComponentBase
- class Mapping(self: Mapping)
Bases:
pybind11_object
- storage_to_real_world(self: Mapping, image_descriptor: ImageDescriptor, value: float) float
- property intercept
- property slope
- property type
- property unit
- class MappingType(self: MappingType, value: int)
Bases:
pybind11_object
Members:
REAL_WORLD_VALUES
STANDARDIZED_UPTAKE_VALUES
- REAL_WORLD_VALUES = <MappingType.REAL_WORLD_VALUES: 0>
- STANDARDIZED_UPTAKE_VALUES = <MappingType.STANDARDIZED_UPTAKE_VALUES: 1>
- property name
- property value
- REAL_WORLD_VALUES = <MappingType.REAL_WORLD_VALUES: 0>
- STANDARDIZED_UPTAKE_VALUES = <MappingType.STANDARDIZED_UPTAKE_VALUES: 1>
- property mappings
- property units
- class imfusion.ReductionMode(self: ReductionMode, value: int)
Bases:
pybind11_object
Members:
LOOKUP
AVERAGE
MINIMUM
MAXIMUM
- AVERAGE = <ReductionMode.AVERAGE: 1>
- LOOKUP = <ReductionMode.LOOKUP: 0>
- MAXIMUM = <ReductionMode.MAXIMUM: 3>
- MINIMUM = <ReductionMode.MINIMUM: 2>
- property name
- property value
- class imfusion.ReferenceImageDataComponent
Bases:
DataComponentBase
- property reference
- class imfusion.RegionOfInterest(self: RegionOfInterest, arg0: ndarray[numpy.int32[3, 1]], arg1: ndarray[numpy.int32[3, 1]])
Bases:
pybind11_object
- property offset
- property size
- class imfusion.Selection(*args, **kwargs)
Bases:
Configurable
Utility class for describing a selection of elements out of a set. Conceptually, a Selection pairs a list of bools describing selected items with the index of a “focus” item and provides syntactic sugar on top. For instance, the set of selected items could define which ones to show in general while the focus item is additionally highlighted. The class is fully separate from the item set of which it describes the selection. This means for instance that it cannot know the actual number of items in the set and the user/parent class must manually make sure that they match. Also, a Selection only manages indices and offers no way of accessing the underlying elements. In order to iterate over all selected indices, you can do for instance the following:
for index in range(selection.start, selection.stop): if selection[index]: ...
The same effect can also be achieved in a much more terse fashion:
for selected_index in selection.selected_indices(): ...
For convenience, the selection can also be converted to a slice object (if the selection has a regular spacing, see below):
selected_subset = container[selection.slice()]
Sometimes it can be more convenient to “thin out” a selection by only selecting every N-th element. To this end, the Selection constructor takes the arguments
start
,stop
andstep
. Settingstep
to N will only select every N-th element, mimicking the signature ofrange
,slice
, etc.Overloaded function.
__init__(self: imfusion._bindings.Selection) -> None
__init__(self: imfusion._bindings.Selection, stop: int) -> None
__init__(self: imfusion._bindings.Selection, start: int, stop: int, step: int = 1) -> None
__init__(self: imfusion._bindings.Selection, indices: list[int]) -> None
- class NonePolicy(self: NonePolicy, value: int)
Bases:
pybind11_object
Members:
EMPTY
FOCUS
ALL
- ALL = <NonePolicy.ALL: 2>
- EMPTY = <NonePolicy.EMPTY: 0>
- FOCUS = <NonePolicy.FOCUS: 1>
- property name
- property value
- is_selected(self: Selection, index: int, none_policy: NonePolicy) bool
- ALL = <NonePolicy.ALL: 2>
- EMPTY = <NonePolicy.EMPTY: 0>
- FOCUS = <NonePolicy.FOCUS: 1>
- property first_selected
- property focus
- property has_regular_skip
- property is_none
- property last_selected
- property range
- property selected_indices
- property size
- property skip
- property start
- property step
- property stop
Bases:
pybind11_object
A
SharedImage
instance represents an image that resides in different memory locations, i.e. in CPU memory or GPU memory.A
SharedImage
can be directly converted from and to a numpy array:>>> import numpy >>> img = SharedImage(numpy.ones([10, 10, 1], dtype='uint8')) >>> arr = numpy.array(img)
See
MemImage
for details.Overloaded function.
__init__(self: imfusion._bindings.SharedImage, mem_image: imfusion._bindings.MemImage) -> None
__init__(self: imfusion._bindings.SharedImage, desc: imfusion._bindings.ImageDescriptor) -> None
__init__(self: imfusion._bindings.SharedImage, desc: imfusion._bindings.ImageDescriptorWorld) -> None
__init__(self: imfusion._bindings.SharedImage, type: imfusion._bindings.PixelType, width: int, height: int, slices: int = 1, channels: int = 1) -> None
__init__(self: imfusion._bindings.SharedImage, array: numpy.ndarray[numpy.int8], greyscale: bool = False) -> None
__init__(self: imfusion._bindings.SharedImage, array: numpy.ndarray[numpy.uint8], greyscale: bool = False) -> None
__init__(self: imfusion._bindings.SharedImage, array: numpy.ndarray[numpy.int16], greyscale: bool = False) -> None
__init__(self: imfusion._bindings.SharedImage, array: numpy.ndarray[numpy.uint16], greyscale: bool = False) -> None
__init__(self: imfusion._bindings.SharedImage, array: numpy.ndarray[numpy.int32], greyscale: bool = False) -> None
__init__(self: imfusion._bindings.SharedImage, array: numpy.ndarray[numpy.uint32], greyscale: bool = False) -> None
__init__(self: imfusion._bindings.SharedImage, array: numpy.ndarray[numpy.float32], greyscale: bool = False) -> None
__init__(self: imfusion._bindings.SharedImage, array: numpy.ndarray[numpy.float64], greyscale: bool = False) -> None
Return a copy of the array with storage values converted to original values. The dtype of the returned array is always DOUBLE.
Return a list of the indices of maximum values, channel-wise. The indices are represented as (x, y, z, image index).
Return a list of the indices of minimum values, channel-wise. The indices are represented as (x, y, z, image index).
Copies the contents of arr to the SharedImage. Automatically calls setDirtyMem.
The casting parameters behaves like numpy.copyto.
Create a copy of the current SharedImage instance with the requested Image format.
This function accepts either: - a PixelType (e.g. imfusion.PixelType.UInt); - most of the numpy’s dtypes (e.g. np.uint); - python’s float or int types.
If the requested PixelType already matches the PixelType of the provided SharedImage, then a clone of the current instance is returned.
Reorders the channels of an image based on the input indices, e.g. indices[0] will correspond to the first channel of the output image.
- Parameters:
indices (List[int]) – List of channels indices to swizzle the channels of
SharedImage
.
Clear representations that are not CPU memory
Return the list of the maximum elements of images, channel-wise.
Return a list of channel-wise average of image elements.
Return the list of the minimum elements of images, channel-wise.
Returns the norm of an image instance, channel-wise.
Convenience method for converting a MemImage or a SharedImage into a newly created numpy array with scale and shift already applied.
Shift and scale may determine a complex change of pixel type prior the conversion into numpy array:
as a first rule, even if the type of shift and scale is float, they will still be considered as integers if they are representing integers (e.g. a shift of 2.000 will be treated as 2);
if shift and scale are such that the pixel values range (determined by the pixel_type) would not be fitting into the pixel_type, e.g. a negative pixel value but the type is unsigned, then the pixel_type will be promoted into a signed type if possible, otherwise into a single precision floating point type;
if shift and scale are such that the pixel values range (determined by the pixel_type) would be fitting into a demoted pixel_type, e.g. the type is signed but the range of pixel values is unsigned, then the pixel_type will be demoted;
if shift and scale do not certainly determine that all the possible pixel values (in the range determined by the pixel_type) would become integers, then the pixel_type will be promoted into a single precision floating point type.
in any case, the returned numpy array will be returned with type up to 32-bit integers. If the integer type would require more bits, then the resulting pixel_type will be DOUBLE.
- Parameters:
self – instance of a MemImage or of a SharedImage
- Returns:
numpy.ndarray
- Prepare the image:
Integral types are converted to unsigned representation if applicable, double-precision will be converted to single-precision float. Furthermore, if shift_only is False it will rescale the present intensity range to [0..1] for floating point types or to the entire available value range for integral types.
Return a list of channel-wise production of image elements.
Return a list of channel-wise sum of image elements.
Convert SharedImageSet or a SharedImage to a torch.Tensor.
- Parameters:
self (DataElement | SharedImageSet | SharedImage) – Instance of SharedImageSet or SharedImage (this function bound as a method to SharedImageSet and SharedImage)
device (device) – Target device for the new torch.Tensor
dtype (dtype) – Type of the new torch.Tensor
same_as (Tensor) – Template tensor whose device and dtype configuration should be matched.
device
anddtype
are still applied afterwards.
- Returns:
New torch.Tensor
- Return type:
Return a numpy compatible shape descripting the dimensions of this image.
The returned tuple has 4 entries: slices, height, width, channels
Bases:
Data
Set of images independent of their storage location.
This class is the main high-level container for image data consisting of one or multiple images or volumes, and should be used both in algorithms and visualization classes. Both a single focus and multiple selection is featured, as well as providing transformation matrices for each image.
The focus image of a
SharedImageSet
can be directly converted from and to a numpy array:>>> import numpy >>> img = SharedImageSet(numpy.ones([1, 10, 10, 10, 1], dtype='uint8')) >>> arr = numpy.array(img)
See
MemImage
for details.Overloaded function.
__init__(self: imfusion._bindings.SharedImageSet) -> None
Creates an empty SharedImageSet.
__init__(self: imfusion._bindings.SharedImageSet, mem_image: imfusion._bindings.MemImage) -> None
__init__(self: imfusion._bindings.SharedImageSet, shared_image: imfusion._bindings.SharedImage) -> None
__init__(self: imfusion._bindings.SharedImageSet, array: numpy.ndarray[numpy.int8], greyscale: bool = False) -> None
__init__(self: imfusion._bindings.SharedImageSet, array: numpy.ndarray[numpy.uint8], greyscale: bool = False) -> None
__init__(self: imfusion._bindings.SharedImageSet, array: numpy.ndarray[numpy.int16], greyscale: bool = False) -> None
__init__(self: imfusion._bindings.SharedImageSet, array: numpy.ndarray[numpy.uint16], greyscale: bool = False) -> None
__init__(self: imfusion._bindings.SharedImageSet, array: numpy.ndarray[numpy.int32], greyscale: bool = False) -> None
__init__(self: imfusion._bindings.SharedImageSet, array: numpy.ndarray[numpy.uint32], greyscale: bool = False) -> None
__init__(self: imfusion._bindings.SharedImageSet, array: numpy.ndarray[numpy.float32], greyscale: bool = False) -> None
__init__(self: imfusion._bindings.SharedImageSet, array: numpy.ndarray[numpy.float64], greyscale: bool = False) -> None
Overloaded function.
add(self: imfusion._bindings.SharedImageSet, shared_image: imfusion._bindings.SharedImage) -> None
add(self: imfusion._bindings.SharedImageSet, mem_image: imfusion._bindings.MemImage) -> None
Return a copy of the array with storage values converted to original values.
- Parameters:
self – instance of a SharedImageSet which provides shift and scale
arr – array to be converted from storage values into original values
- Returns:
numpy.ndarray
Return a list of the indices of maximum values, channel-wise. The indices are represented as (x, y, z, image index).
Return a list of the indices of minimum values, channel-wise. The indices are represented as (x, y, z, image index).
Copies the contents of arr to the MemImage. Automatically calls setDirtyMem.
Returns a new SharedImageSet formed by new SharedImage instances obtained by converting the original ones into the requested PixelType.
This function accepts either: - a PixelType (e.g. imfusion.PixelType.UInt); - most of the numpy’s dtypes (e.g. np.uint); - python’s float or int types.
If the requested type already matches the input type, the returned SharedImageSet will contain clones of the original images.
Reorders the channels of an image based on the input indices, e.g. indices[0] will correspond to the first channel of the output image.
- Parameters:
indices (List[int]) – List of channels indices to swizzle the channels of
SharedImageSet
.
Create a SharedImageSet from a torch Tensor. If you want to copy metadata from an existing SharedImageSet you can pass it as the
get_metadata_from
argument. If you are using this, make sure that the size of the tensor’s batch dimension and the number of images in the SIS are equal. Ifget_metadata_from
is provided,properties
will be copied from the SIS andworld_to_image_matrix
,spacing
andmodality
from the contained SharedImages.- Parameters:
cls – Instance of type i.e. SharedImageSet (this function is bound as a classmethod to SharedImageSet)
tensor (Tensor) – Instance of torch.Tensor
get_metadata_from (SharedImageSet | None) – Instance of SharedImageSet from which metadata should be copied.
- Returns:
New instance of SharedImageSet
- Return type:
Return the list of the maximum elements of images, channel-wise.
Return a list of channel-wise average of image elements.
Return the list of the minimum elements of images, channel-wise.
Returns the norm of an image instance, channel-wise.
Convenience method for reading a SharedImageSet as original values, with shift and scale already applied.
- Parameters:
self – instance of a SharedImageSet
- Returns:
numpy.ndarray
Return a list of channel-wise production of image elements.
Removes and deletes the SharedImage from the set.
Return a list of channel-wise sum of image elements.
Convert SharedImageSet or a SharedImage to a torch.Tensor.
- Parameters:
self (DataElement | SharedImageSet | SharedImage) – Instance of SharedImageSet or SharedImage (this function bound as a method to SharedImageSet and SharedImage)
device (device) – Target device for the new torch.Tensor
dtype (dtype) – Type of the new torch.Tensor
same_as (Tensor) – Template tensor whose device and dtype configuration should be matched.
device
anddtype
are still applied afterwards.
- Returns:
New torch.Tensor
- Return type:
Return a numpy compatible shape descripting the dimensions of this image.
The returned tuple has 5 entries: #frames, slices, height, width, channels
- class imfusion.SignalConnection
Bases:
pybind11_object
- disconnect(self: SignalConnection) bool
- property is_active
- property is_blocked
- property is_connected
- class imfusion.SkippingMask(self: SkippingMask, shape: ndarray[numpy.int32[3, 1]], skip: ndarray[numpy.int32[3, 1]])
Bases:
Mask
Basic mask where only every N-th pixel is considered inside.
- property skip
Step size in pixels for the mask
- class imfusion.SpacingMode(self: SpacingMode, value: int)
Bases:
pybind11_object
Members:
EXACT
ADJUST
- ADJUST = <SpacingMode.ADJUST: 1>
- EXACT = <SpacingMode.EXACT: 0>
- property name
- property value
Bases:
SharedImageSet
- class imfusion.TrackerID(*args, **kwargs)
Bases:
pybind11_object
Overloaded function.
__init__(self: imfusion._bindings.TrackerID) -> None
__init__(self: imfusion._bindings.TrackerID, id: str = ‘’, model_number: str = ‘’, name: str = ‘’) -> None
- property id
- property model_number
- property name
- class imfusion.TrackingSequence(self: TrackingSequence, name: str = '')
Bases:
Data
- add(*args, **kwargs)
Overloaded function.
add(self: imfusion._bindings.TrackingSequence, mat: numpy.ndarray[numpy.float64[4, 4]]) -> None
add(self: imfusion._bindings.TrackingSequence, mat: numpy.ndarray[numpy.float64[4, 4]], timestamp: float) -> None
add(self: imfusion._bindings.TrackingSequence, mat: numpy.ndarray[numpy.float64[4, 4]], timestamp: float, quality: float) -> None
add(self: imfusion._bindings.TrackingSequence, mat: numpy.ndarray[numpy.float64[4, 4]], timestamp: float, quality: float, flags: int) -> None
- clear(self: TrackingSequence) None
- flags(self: TrackingSequence, num: int = -1) int
- matrix(*args, **kwargs)
Overloaded function.
matrix(self: imfusion._bindings.TrackingSequence, num: int) -> numpy.ndarray[numpy.float64[4, 4]]
matrix(self: imfusion._bindings.TrackingSequence, time: float) -> numpy.ndarray[numpy.float64[4, 4]]
- quality(*args, **kwargs)
Overloaded function.
quality(self: imfusion._bindings.TrackingSequence, num: int) -> float
quality(self: imfusion._bindings.TrackingSequence, time: float, check_distance: bool = True, ignore_relative: bool = False) -> float
- raw_matrix(self: TrackingSequence, num: int) ndarray[numpy.float64[4, 4]]
- remove(self: TrackingSequence, pos: int, count: int = 1) None
- set_raw_matrix(self: TrackingSequence, idx: int, value: ndarray[numpy.float64[4, 4]]) None
- set_timestamp(self: TrackingSequence, idx: int, value: float) None
- shift_timestamps(self: TrackingSequence, shift: float) None
- timestamp(self: TrackingSequence, num: int = -1) float
- property calibration
- property center
- property filename
- property filter_mode
- property filter_size
- property has_timestamps
- property instrument_id
- property instrument_model
- property instrument_name
- property invert
- property median_time_step
- property registration
- property relative_to_first
- property relative_tracking
- property size
- property temporal_offset
- property tracker_id
- class imfusion.TransformationStashDataComponent(self: TransformationStashDataComponent)
Bases:
DataComponentBase
- property original
- property transformations
- class imfusion.VisualizerHandle
Bases:
pybind11_object
The handle to a visualizer. It allows to close a specific visualizer when needed. Example:
>>> import imfusion >>> data_path = "some/path" >>> data = imfusion.load(data_path) >>> visualizer_handle = imfusion.show(data, title="Title") >>> print(visualizer_handle.title()) >>> import time >>> time.sleep(2) >>> visualizer_handle.close()
- close(self: VisualizerHandle) None
Close the visualizer associated to this handle.
- title(self: VisualizerHandle) str
Get the title of the visualizer associated to this handle.
- class imfusion.VitalsDataComponent
Bases:
DataComponentBase
DataComponent for storing a collection of time dependent vital signs like ECG, heart rate or pulse oximeter measurements.
- class VitalsKind(self: VitalsKind, value: int)
Bases:
pybind11_object
Members:
ECG
PULSE_OXIMETER
HEARTH_RATE
OTHER
- ECG = <VitalsKind.ECG: 0>
- HEARTH_RATE = <VitalsKind.HEARTH_RATE: 2>
- OTHER = <VitalsKind.OTHER: 3>
- PULSE_OXIMETER = <VitalsKind.PULSE_OXIMETER: 1>
- property name
- property value
- __getitem__(self: VitalsDataComponent, kind: VitalsKind) list[VitalsTimeSeries]
- ECG = <VitalsKind.ECG: 0>
- HEARTH_RATE = <VitalsKind.HEARTH_RATE: 2>
- OTHER = <VitalsKind.OTHER: 3>
- PULSE_OXIMETER = <VitalsKind.PULSE_OXIMETER: 1>
- property kinds
- imfusion.algorithm_properties(id: str, data: list) Properties
Returns the default properties of the given algorithm. This is useful to figure out what properties are supported by an algorithm.
- imfusion.auto_window(image: SharedImageSet, change2d: bool = True, change3d: bool = True, lower_limit: float = 0.0, upper_limit: float = 0.0) None
Update window/level of input image to show the entire intensity range of the image.
- Parameters:
image (SharedImageSet) – Image to change the windowing for.
change2d (bool) – Flag whether update the DisplayOptions2d attached to a img.
change3d (bool) – Flag whether update the DisplayOptions3d attached to a img.
lower_limit (double) – Ratio of lower values removed by the auto windowing.
upper_limit (double) – Ratio of upper values removed by the auto windowing.
- imfusion.available_algorithms(sub_string: str = '', case_sensitive: bool = False) list[str]
Return a list of all available algorithm ids.
Optionally, a substring can be given to filter the list (case-insensitive by default).
- imfusion.available_data_components() list[str]
Returns the Unique IDs of all DataComponents registered in DataComponentFactory.
- imfusion.create_algorithm(id: str, data: list = [], properties: Properties = None) object
Create the algorithm with the given id and but without executing it.
The algorithm will only be created if it is compatible with the given data. The optional
Properties
object will be used to configure the algorithm.- Parameters:
id – String identifier of the Algorithm to create.
data – List of input data that the Algorithm expects.
properties – Configuration for the Algorithm in the form of a
Properties
instance.
Example
>>> create_algorithm("Create Synthetic Data", []) <imfusion._bindings.BaseAlgorithm object at ...>
- imfusion.create_data_component(id: str, properties: Properties = None) object
Instantiates a DataComponent specified by the given ID.
- Parameters:
id – Unique ID of the DataComponent to create.
properties – Optional Properties object. If not None, it will used to configure the newly created DataComponent.
- imfusion.deinit() None
De-initializes the framework.
Deletes the main OpenGL context and unloads all plugins.
This should only be called at the end of the application. Automatically called when the module is unloaded.
Does nothing if the framework was not initialized yet.
- imfusion.execute_algorithm(id: str, data: list = [], properties: Properties = None) list
Execute the algorithm with the given id and returns its output.
The algorithm will only be executed if it is compatible with the given data. The optional
Properties
object will be used to configure the algorithm before executing it.
- imfusion.gpu_info() object
Return string with information about GPU to check if hardware support for OpenGL is available.
- imfusion.info() FrameworkInfo
Provides general information about the framework.
- imfusion.keep_data_alive(cls)
- imfusion.list_viewers() list[VisualizerHandle]
Return a list of visualization handles that were created with
show()
. Please note that this method may return viewers that have been closed withoutVisualizerHandle.close()
orclose_viewers()
.
- imfusion.load(path: str) list
Load the content of a file or folder as a list of
Data
.The list can contain instances of any class deriving from Data, i.e.
SharedImage
,Mesh
,PointCloud
, etc…- Parameters:
path – can be path to a file containing a supported file formats, or a folder containing Dicom data, if the imfusion package was built with Dicom support.
Note
An IOError is raised if the file cannot be opened or a ValueError if the filetype is not supported. Some filetypes (like workspaces) cannot be opened by this function, but must be opened with
imfusion.ApplicationController.open()
.Example
>>> imfusion.load('ct_image.png') [imfusion.SharedImageSet(size: 1, [imfusion.SharedImage(USHORT width: 512 height: 512 spacing: 0.661813x0.661813x1 mm)])] >>> imfusion.load('multi_label_segmentation.nii.gz') [imfusion.SharedImageSet(size: 1, [imfusion.SharedImage(UBYTE width: 128 height: 128 slices: 128 channels: 3 spacing: 1x1x1 mm)])] >>> imfusion.load('ultrasound_sweep.imf') [imfusion.SharedImageSet(size: 159, [ imfusion.SharedImage(UBYTE width: 457 height: 320 spacing: 0.4x0.4x1 mm), imfusion.SharedImage(UBYTE width: 457 height: 320 spacing: 0.4x0.4x1 mm), ... imfusion.SharedImage(UBYTE width: 457 height: 320 spacing: 0.4x0.4x1 mm) >>> imfusion.load('path_to_folder_containing_multiple_dcm_datasets') [imfusion.SharedImageSet(size: 1, [imfusion.SharedImage(FLOAT width: 400 height: 400 slices: 300 spacing: 2.03642x2.03642x3 mm)])]
- imfusion.load_plugin(path: str) None
Load a single ImFusionLib plugin from the given file. WARNING: This might execute arbitary code. Only use with trusted files!
- imfusion.load_plugins(folder: str) None
Loads all ImFusionLib plugins from the given folder. WARNING: This might execute arbitary code. Only use with trusted folders!
- imfusion.log_level() int
Returns the level of the logging in the ImFusionSDK (Trace = 0, Debug = 1, Info = 2, Warning = 3, Error = 4, Fatal = 5, Quiet = 6)
- imfusion.open(file: str) list
Open a file and load it as data.
Return a list of loaded datasets. An IOError is raised if the file cannot be opened or a ValueError if the filetype is not supported.
Some filetypes (like workspaces) cannot be opened by this function, but must be opened with
imfusion.ApplicationController.open()
.
- imfusion.open_in_suite(data: list[Data]) None
Starts the ImFusion Suite with the input data list. The ImFusionSuite executable must be in your PATH.
- imfusion.register_algorithm(id, name, cls)
Register an Algorithm to the framework.
The Algorithm will be accessible through the given id. If the id is already used, the registration will fail.
cls must derive from Algorithm otherwise a TypeError is raised.
- imfusion.save(*args, **kwargs)
Overloaded function.
save(shared_image_set: imfusion._bindings.SharedImageSet, file_path: str, **kwargs) -> None
Save a
SharedImageSet
to the specified file path. The path extension is used to determine which file format to save to. Currently supported file formats are:ImFusion File, extension
imf
NIfTI File, extensions [
nii
,nii.gz
]
- Parameters:
shared_image_set – Instance of
SharedImageSet
.file_path – Path to output file. The path extension is used to determine the file format.
\**kwargs –
keep_ras_coordinates (
bool
) – NIfTI only. Sets whether to the keep RAS (Right, Anterior, Superior) coordinate system.
- Raises:
RuntimeError if file_path extension is not supported. Currently supported extensions are ['imf', 'nii', 'nii.gz']. –
Example
>>> image_set = SharedImageSet(...) >>> imfusion.save(image_set, 'path/to/imf/file.imf') # saves an ImFusionFile >>> imfusion.save(image_set, 'path/to/nifti/file.nii.gz', keep_ras_coordinates=True) # saves a NIfTI file
save(data: imfusion._bindings.Data, file_path: str) -> None
Save a
Data
instance to the specified file path as an ImFusion file.- Parameters:
data – any instance of class deriving from
Data
can be saved with this methods, examples areSharedImageSet
,Mesh
andPointCloud
.file_path – Path to ImFusion file. The data is saved in a single file. File path must end with .imf.
Note
Raises a RuntimeError on failure or if file_path doesn’t end with .imf extension.
Example
>>> mesh = Mesh(...) >>> imfusion.save(mesh, 'path/to/imf/file.imf')
save(data_list: list[imfusion._bindings.Data], file_path: str) -> None
Save a list of data to the specified file path as an ImFusion file.
- Parameters:
data_list – List of
Data
. Any class deriving from Data can be saved with this methods. Examples of Data areSharedImageSet
,Mesh
,PointCloud
, etc.file_path – Path to ImFusion file. The entire list of Data is saved in a single file. File path must end with .imf
Note
Raises a RuntimeError on failure or if file_path doesn’t end with .imf extension.
Example
>>> image_set = SharedImageSet(...) >>> mesh = Mesh(...) >>> point_cloud = PointCloud(...) >>> another_image_set = SharedImageSet(...) >>> imfusion.save([image_set, mesh, point_cloud, another_image_set], 'path/to/imf/file.imf')
save(point_cloud: imfusion._bindings.PointCloud, file_path: str) -> None
Save a
imfusion.SharedImageSet
to the specified file path. The path extension is used to determine which file format to save to. Currently supported file formats are:ImFusion File, extension
imf
Point Cloud Data used inside Point Cloud Library (PCL), extension
pcd
OBJ file format developed by Wavefront , extension
obj
Polygon File Format or the Stanford Triangle Format, extension
ply
- Parameters:
point_cloud – Instance of
imfusion.PointCloud
.file_path – Path to output file. The path extension is used to determine the file format.
- Raises:
RuntimeError if file_path extension is not supported. Currently supported extensions are ['imf', 'pcd', 'obj', 'ply', 'txt', 'xyz']. –
Example
>>> pc = PointCloud(...) >>> imfusion.save(pc, 'path/to/imf/file.pcd') # saves as a pcd file
save(mesh: imfusion._bindings.Mesh, file_path: str) -> None
Save a
imfusion.Mesh
to the specified file path. The path extension is used to determine which file format to save to. Currently supported file formats are:ImFusion File, extension
imf
Polygon File Format or the Stanford Triangle Format, extension
ply
STL file format used for 3D printing and computer-aided design (CAD), extension
stl
Object File Format, extension
off
OBJ file format developed by Wavefront , extension
obj
Virtual Reality Modeling Language file format, extension
wrl
Standard Starlink NDF (SUN/33) file format, extension
surf
Raster GIS file format developed by Esri, extension
grid
3D Manufacturing Format , extension
3mf
- Parameters:
mesh – Instance of
imfusion.Mesh
.file_path – Path to output file. The path extension is used to determine the file format.
- Raises:
RuntimeError if file_path extension is not supported. Currently supported extensions are [ply", "stl", "off", "obj", "wrl", "surf", "grid", "3mf]. –
Example
>>> mesh = ImFusion.Mesh(...) >>> imfusion.save(mesh, 'path/to/imf/file.imf') # saves an ImFusionFile
- imfusion.set_log_level(level: int) None
Sets the level of the logging in the ImFusionSDK (Trace = 0, Debug = 1, Info = 2, Warning = 3, Error = 4, Fatal = 5, Quiet = 6).
The initial log level is 3 (Warning), but can be set explicitly with the IMFUSION_LOG_LEVEL environment variable.
Note
After calling
transfer_logging_to_python()
this function has no effect.
- imfusion.show(*args, **kwargs)
Overloaded function.
show(data: imfusion._bindings.Data, *, title: Optional[str] = None) -> imfusion._bindings.VisualizerHandle
Launch a visualizer displaying the input data (e.g. a SharedImageSet). A title can also optionally be assigned.
show(data_list: list[imfusion._bindings.Data], *, title: Optional[str] = None) -> imfusion._bindings.VisualizerHandle
Launch a visualizer displaying the input list of data. A title can also optionally be assigned.
- imfusion.transfer_logging_to_python() None
Transfers the control of logging from ImFusionLib to the “ImFusion” logger, which can obtained through the python’s logging module with
logging.getLogger("ImFusion")
.After calling
transfer_logging_to_python
, the configuration of the logger will be possible exclusively through the Python’s logging module interface, e.g. usinglogging.getLogger("ImFusion").setLevel
. Besides, all the imfusion logs that happen after calling this function but before importing thelogging
module will not be captured.Note
Please note that this redirection cannot be cancelled and that any subsequent calls to this functions will have no effect.
Warning
Due to the GIL, log messages from internal threads won’t be forwarded to the logger.
- imfusion.try_import_imfusion_plugin(plugin: str) None
- Parameters:
plugin (str) –
- Return type:
None
- imfusion.unregister_algorithm(name: str) None
Unregister a previously registered algorithm.
This only works for algorithm that where registered through the Python interface but not for built-in algorithm.
- imfusion.wraps(wrapped, assigned=('__module__', '__name__', '__qualname__', '__doc__', '__annotations__'), updated=('__dict__',))
Decorator factory to apply update_wrapper() to a wrapper function
Returns a decorator that invokes update_wrapper() with the decorated function as the wrapper argument and the arguments to wraps() as the remaining arguments. Default arguments are as for update_wrapper(). This is a convenience function to simplify applying partial() to update_wrapper().
imfusion.dicom
Submodules containing DICOM related functionalities.
- class imfusion.dicom.GeneralEquipmentModuleDataComponent(self: GeneralEquipmentModuleDataComponent)
Bases:
DataComponentBase
- property anatomical_orientation_type
- property device_serial_number
- property gantry_id
- property institution_address
- property institution_name
- property institutional_departmentname
- property manufacturer
- property manufacturers_model_name
- property software_versions
- property spatial_resolution
- property station_name
- class imfusion.dicom.RTStructureDataComponent(self: RTStructureDataComponent)
Bases:
DataComponentBase
DataComponent for PointClouds loaded from a DICOM RTStructureSet.
Provides information about the original structure/grouping of the points. See RTStructureIoAlgorithm for details about how RTStructureSets are loaded.
Warning
Since this component uses fixed indices into the PointCloud’s points structure, it can only be used if the PointCloud remains unchanged!
- class Contour
Bases:
pybind11_object
Represents a single item in the original ‘Contour Sequence’ (3006,0040).
- property length
- property start_index
- property type
- class GeometryType(self: GeometryType, value: int)
Bases:
pybind11_object
Defines how the points of a contour should be interpreted.
Members:
POINT
OPEN_PLANAR
CLOSED_PLANAR
OPEN_NONPLANAR
- CLOSED_PLANAR = <GeometryType.CLOSED_PLANAR: 2>
- OPEN_NONPLANAR = <GeometryType.OPEN_NONPLANAR: 3>
- OPEN_PLANAR = <GeometryType.OPEN_PLANAR: 1>
- POINT = <GeometryType.POINT: 0>
- property name
- property value
- class ROIGenerationAlgorithm(self: ROIGenerationAlgorithm, value: int)
Bases:
pybind11_object
Defines how the RT structure was generated
Members:
UNKNOWN
AUTOMATIC
SEMI_AUTOMATIC
MANUAL
- AUTOMATIC = <ROIGenerationAlgorithm.AUTOMATIC: 1>
- MANUAL = <ROIGenerationAlgorithm.MANUAL: 3>
- SEMI_AUTOMATIC = <ROIGenerationAlgorithm.SEMI_AUTOMATIC: 2>
- UNKNOWN = <ROIGenerationAlgorithm.UNKNOWN: 0>
- property name
- property value
- property color
- property contours
- property generation_algorithm
- property referenced_frame_of_reference_UID
- class imfusion.dicom.ReferencedInstancesComponent(self: ReferencedInstancesComponent)
Bases:
DataComponentBase
DataComponent to store DICOM instances that are referenced by the dataset.
A DICOM dataset can reference a number of other DICOM datasets that are somehow related. The references in this component are determined by the ReferencedSeriesSequence.
- is_referencing(*args, **kwargs)
Overloaded function.
is_referencing(self: imfusion.dicom.ReferencedInstancesComponent, arg0: imfusion.dicom.SourceInfoComponent) -> bool
Returns true if the instances of the given SourceInfoComponent are referenced by this component.
The instances and references have to only intersect for this to return true. This way, e.g. a segmentation would be considered referencing a CT if it only overlaps in a view slices.
is_referencing(self: imfusion.dicom.ReferencedInstancesComponent, arg0: imfusion._bindings.SharedImageSet) -> bool
Convenient method that calls the above method with SourceInfoComponent of sis.
Only returns true if all elementwise SourceInfoComponents are referenced.
- class imfusion.dicom.SourceInfoComponent(self: SourceInfoComponent)
Bases:
DataComponentBase
- property sop_class_uids
- property sop_instance_uids
- property source_uris
- imfusion.dicom.load_file(file_path: str) list
Load a single file as DICOM.
Depending on the SOPClassUID of the DICOM file, this can result in:
a 2D or 3D
SharedImageSet
containing one or multiple framesa segmentation labelmap (i.e. a 8-bit
SharedImageSet
with aLabelDataComponent
)a RT Structure Set (i.e. a
PointCloud
with aRTStructureDataComponent
)
For regular images, usually only one result is generated. If not it is usually an indication that the file could not be entirely reconstructed as a volume (e.g. the spacing between slices is not uniform).
For segmentations, multiple labelmaps will be returned if labels overlap (i.e. one pixel has at least 2 labels).
For RT Structure Sets, one
PointCloud
is returned per structure.
- imfusion.dicom.load_folder(folder_path: str, recursive: bool = True, ignore_non_dicom: bool = True) list
Load all DICOM files from a folder.
Generally this produces one dataset per DICOM series, however, this might not always be the case. Check
ImageInfoDataComponent
for the actual series UID.See
imfusion.dicom.load_file()
for a list of datasets that can be generated.Either a path to a local folder or a URL is accepted. URLs support the file:// and pacs:// schemes. To load a series from PACS, use an URL with the following format:
pacs://<hostname>:<port>/<PACS AE title>?series=<series instance uid>&study=<study instance uid>
To receive DICOMs from the PACS, a temporary server will be started on the port defined byimfusion.dicom.set_pacs_client_config()
.- Parameters:
folder_path (str) – A path to a folder or an URL.
recursive (bool) – Whether subfolders should be scanned recursively for all DICOM files.
ignore_non_dicom (bool) – Whether files without a valid DICOM header should be ignored. This is usually faster and produces less warnings/errors, but technically the DICOM header is optional and might be missing. This is very rare though.
- imfusion.dicom.rtstruct_to_labelmap(rtstruct_set: list[PointCloud], referenced_image: SharedImageSet, combine_label_maps: bool = False) list[SharedImageSet]
Algorithm to convert a
PointCloud
with aRTStructureDataComponent
datacomponent to a labelmap.This is currently only supported for CLOSED_PLANAR contours in
RTStructureDataComponent
. The algorithm requires a reference volume that determines the size of the labelmap. Each contour is expected to be planar on a slice in the reference volume. This algorithm works best when using the volume that is referenced by the original DICOM RTStructureDataSet (seeimfusion.RTStructureDataComponent.referenced_frame_of_reference_UID
).Returns one labelmap per input RT Structure.
- imfusion.dicom.save_file(image: SharedImageSet, file_path: str, referenced_image: SharedImageSet = None) None
Save an image as a single DICOM file.
The SOP Class that is used for the export is determined based on the modality of the image. For example, CT images will be exported as ‘Enhanced CT Image Storage’ and LABEL images as ‘Segmentation Storage’.
When exporting volumes, note that older software might not be able to load them. Use
imfusion.dicom.save_folder()
instead.Optionally, the generated DICOMs can also reference another DICOM image, which is passed with the referenced_image argument. This referenced_image must have been loaded from DICOM and/or contain a elementwise
SourceInfoComponent
and aImageInfoDataComponent
contain a valid series instance UID. With such a reference, other software can determine whether different DICOMs are related. This is especially important when exporting segmentations with modality LABEL. The exported segmentations must reference the data that was used to generate the segmentation. If this reference is missing, the exported segmentations cannot be loaded in some software.When exporting segmentations, only the slices containing non-zero labels will be exported. After re-importing the file, it therefore might have a different number of slices.
For saving RT Structures, see
imfusion.dicom.save_rtstruct()
.- Parameters:
image (SharedImageSet) – The image to export
file_path (str) – File to write the resulting DICOM to. Existing files will be overwritten!
referenced_image (SharedImageSet) – An optional image that the exported image should reference.
Warning
At the moment, only exporting single frame CT and MR volumes is well supported. Since DICOM is an extensive standard, any other kind of image might lead to a non-standard or invalid DICOM.
- imfusion.dicom.save_folder(image: SharedImageSet, folder_path: str, referenced_image: SharedImageSet = None) None
Save an image as a DICOM folder containing potentially multiple files.
The SOP Class that is used for the export is determined based on the modality of the image. For example, CT images will be exported as ‘CT Image Storage’.
Works like
imfusion.dicom.save_file()
except for using different SOP Class UIDs.
- imfusion.dicom.save_rtstruct(*args, **kwargs)
Overloaded function.
save_rtstruct(labelmap: imfusion._bindings.SharedImageSet, referenced_image: imfusion._bindings.SharedImageSet, file_path: str) -> None
Save a labelmap as a RT Structure Set.
The contours of a label inside the labelmap will be used as a contour in the RT Structure. Each slice of the labelmap generates seperate contours (RT Structure does not support 3D contours).
save_rtstruct(rtstruct_set: list[imfusion._bindings.PointCloud], referenced_image: imfusion._bindings.SharedImageSet, file_path: str) -> None
Save a list of
PointCloud
as a RT Structure Set.Each
PointCloud
must provide aRTStructureDataComponent
.
- imfusion.dicom.set_pacs_client_config(ae_title: str, port: int) None
Set the client configuration when connecting to a PACS.
To receive DICOMs from a PACS server, the AE title and port needs to be registered with the PACS as well (vendor specific and not done by this function!).
Warning
The values will be persisted on the system and will be restored when the application is restarted.
imfusion.imagemath
imfusion.imagemath - Bindings for ImageMath Operations
This module provides element-wise arithmetic operations for SharedImage
and SharedImageSet
. You can apply these imagemath
functionalities directly to objects of SharedImage
and SharedImageSet
with eager evaluation. Alternatively, the module offers lazy evaluation functionality through the submodule lazy
. You can create wrapper expressions using the Expression
provided by lazy
.
See Expression
for details.
Example for eager evaluation:
>>> from imfusion import _bindings.imagemath as imagemath
Add si1 and si2, which are SharedImage
instances:
>>> res = si1 + si2
res is a SharedImage
instance.
>>> print(res)
imfusion.SharedImage(FLOAT width: 512 height: 512)
Example for lazy evaluation:
>>> from imfusion import _bindings.imagemath as imagemath
Create expressions from SharedImage
instances:
>>> expr1 = imagemath.lazy.Expression(si1)
>>> expr2 = imagemath.lazy.Expression(si2)
Add expr1 and expr2:
>>> expr3 = expr1 + expr2
Alternatively, you could add expr1 and si2 or si1 and expr2. Any expression containing an instance of Expression
will be converted to lazy evaluation expression.
>>> expr3 = expr1 + si2
Find the result with lazy evaluation:
>>> res = expr3.evaluate()
res is a SharedImage
instance similar to eager evaluation case.
>>> print(res)
imfusion.SharedImage(FLOAT width: 512 height: 512)
- imfusion.imagemath.absolute(*args, **kwargs)
Overloaded function.
absolute(x: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Absolute value, element-wise.
- Parameters:
x (
SharedImage
) –SharedImage
instance.
absolute(x: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Absolute value, element-wise.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.add(*args, **kwargs)
Overloaded function.
add(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Addition, element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImage
) –SharedImage
instance.
add(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Addition, element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
add(x1: imfusion._bindings.SharedImage, x2: float) -> imfusion._bindings.SharedImage
Addition, element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (float) – scalar value.
add(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImageSet
Addition, element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImage
) –SharedImage
instance.
add(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Addition, element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
add(x1: imfusion._bindings.SharedImageSet, x2: float) -> imfusion._bindings.SharedImageSet
Addition, element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (float) – scalar value.
add(x1: float, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Addition, element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImage
) –SharedImage
instance.
add(x1: float, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Addition, element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.arctan2(*args, **kwargs)
Overloaded function.
arctan2(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Trigonometric inverse tangent, element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImage
) –SharedImage
instance.
arctan2(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Trigonometric inverse tangent, element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
arctan2(x1: imfusion._bindings.SharedImage, x2: float) -> imfusion._bindings.SharedImage
Trigonometric inverse tangent, element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (float) – scalar value.
arctan2(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImageSet
Trigonometric inverse tangent, element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImage
) –SharedImage
instance.
arctan2(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Trigonometric inverse tangent, element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
arctan2(x1: imfusion._bindings.SharedImageSet, x2: float) -> imfusion._bindings.SharedImageSet
Trigonometric inverse tangent, element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (float) – scalar value.
arctan2(x1: float, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Trigonometric inverse tangent, element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImage
) –SharedImage
instance.
arctan2(x1: float, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Trigonometric inverse tangent, element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.argmax(*args, **kwargs)
Overloaded function.
argmax(x: imfusion._bindings.SharedImage) -> list[numpy.ndarray[numpy.int32[4, 1]]]
Return a list of the indices of maximum values, channel-wise. The indices are represented as (x, y, z, image index).
- Parameters:
x (
SharedImage
) –SharedImage
instance.
argmax(x: imfusion._bindings.SharedImageSet) -> list[numpy.ndarray[numpy.int32[4, 1]]]
Return a list of the indices of maximum values, channel-wise. The indices are represented as (x, y, z, image index).
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.argmin(*args, **kwargs)
Overloaded function.
argmin(x: imfusion._bindings.SharedImage) -> list[numpy.ndarray[numpy.int32[4, 1]]]
Return a list of the indices of minimum values, channel-wise. The indices are represented as (x, y, z, image index).
- Parameters:
x (
SharedImage
) –SharedImage
instance.
argmin(x: imfusion._bindings.SharedImageSet) -> list[numpy.ndarray[numpy.int32[4, 1]]]
Return a list of the indices of minimum values, channel-wise. The indices are represented as (x, y, z, image index).
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.channel_swizzle(*args, **kwargs)
Overloaded function.
channel_swizzle(x: imfusion._bindings.SharedImage, indices: list[int]) -> imfusion._bindings.SharedImage
Reorders the channels of an image based on the input indices, e.g. indices[0] will correspond to the first channel of the output image.
- Parameters:
x (
SharedImage
) –SharedImage
instance.indices (List[int]) – List of channels indices to swizzle the channels of
SharedImage
.
channel_swizzle(x: imfusion._bindings.SharedImageSet, indices: list[int]) -> imfusion._bindings.SharedImageSet
Reorders the channels of an image based on the input indices, e.g. indices[0] will correspond to the first channel of the output image.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.indices (List[int]) – List of channels indices to swizzle the channels of
SharedImageSet
.
- imfusion.imagemath.cos(*args, **kwargs)
Overloaded function.
cos(x: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Cosine, element-wise.
- Parameters:
x (
SharedImage
) –SharedImage
instance.
cos(x: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Cosine, element-wise.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.divide(*args, **kwargs)
Overloaded function.
divide(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Division, element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImage
) –SharedImage
instance.
divide(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Division, element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
divide(x1: imfusion._bindings.SharedImage, x2: float) -> imfusion._bindings.SharedImage
Division, element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (float) – scalar value.
divide(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImageSet
Division, element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImage
) –SharedImage
instance.
divide(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Division, element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
divide(x1: imfusion._bindings.SharedImageSet, x2: float) -> imfusion._bindings.SharedImageSet
Division, element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (float) – scalar value.
divide(x1: float, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Division, element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImage
) –SharedImage
instance.
divide(x1: float, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Division, element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.equal(*args, **kwargs)
Overloaded function.
equal(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Return the truth value of (x1 == x2), element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImage
) –SharedImage
instance.
equal(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 == x2), element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
equal(x1: imfusion._bindings.SharedImage, x2: float) -> imfusion._bindings.SharedImage
Return the truth value of (x1 == x2), element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (float) – scalar value.
equal(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 == x2), element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImage
) –SharedImage
instance.
equal(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 == x2), element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
equal(x1: imfusion._bindings.SharedImageSet, x2: float) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 == x2), element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (float) – scalar value.
equal(x1: float, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Return the truth value of (x1 == x2), element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImage
) –SharedImage
instance.
equal(x1: float, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 == x2), element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.exp(*args, **kwargs)
Overloaded function.
exp(x: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Exponential operation, element-wise.
- Parameters:
x (
SharedImage
) –SharedImage
instance.
exp(x: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Exponential operation, element-wise.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.greater(*args, **kwargs)
Overloaded function.
greater(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Return the truth value of (x1 > x2), element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImage
) –SharedImage
instance.
greater(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 > x2), element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
greater(x1: imfusion._bindings.SharedImage, x2: float) -> imfusion._bindings.SharedImage
Return the truth value of (x1 > x2), element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (float) – scalar value.
greater(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 > x2), element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImage
) –SharedImage
instance.
greater(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 > x2), element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
greater(x1: imfusion._bindings.SharedImageSet, x2: float) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 > x2), element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (float) – scalar value.
greater(x1: float, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Return the truth value of (x1 > x2), element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImage
) –SharedImage
instance.
greater(x1: float, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 > x2), element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.greater_equal(*args, **kwargs)
Overloaded function.
greater_equal(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Return the truth value of (x1 >= x2), element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImage
) –SharedImage
instance.
greater_equal(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 >= x2), element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
greater_equal(x1: imfusion._bindings.SharedImage, x2: float) -> imfusion._bindings.SharedImage
Return the truth value of (x1 >= x2), element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (float) – scalar value.
greater_equal(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 >= x2), element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImage
) –SharedImage
instance.
greater_equal(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 >= x2), element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
greater_equal(x1: imfusion._bindings.SharedImageSet, x2: float) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 >= x2), element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (float) – scalar value.
greater_equal(x1: float, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Return the truth value of (x1 >= x2), element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImage
) –SharedImage
instance.
greater_equal(x1: float, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 >= x2), element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.less(*args, **kwargs)
Overloaded function.
less(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Return the truth value of (x1 < x2), element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImage
) –SharedImage
instance.
less(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 < x2), element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
less(x1: imfusion._bindings.SharedImage, x2: float) -> imfusion._bindings.SharedImage
Return the truth value of (x1 < x2), element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (float) – scalar value.
less(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 < x2), element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImage
) –SharedImage
instance.
less(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 < x2), element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
less(x1: imfusion._bindings.SharedImageSet, x2: float) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 < x2), element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (float) – scalar value.
less(x1: float, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Return the truth value of (x1 < x2), element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImage
) –SharedImage
instance.
less(x1: float, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 < x2), element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.less_equal(*args, **kwargs)
Overloaded function.
less_equal(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Return the truth value of (x1 <= x2), element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImage
) –SharedImage
instance.
less_equal(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 <= x2), element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
less_equal(x1: imfusion._bindings.SharedImage, x2: float) -> imfusion._bindings.SharedImage
Return the truth value of (x1 <= x2), element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (float) – scalar value.
less_equal(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 <= x2), element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImage
) –SharedImage
instance.
less_equal(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 <= x2), element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
less_equal(x1: imfusion._bindings.SharedImageSet, x2: float) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 <= x2), element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (float) – scalar value.
less_equal(x1: float, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Return the truth value of (x1 <= x2), element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImage
) –SharedImage
instance.
less_equal(x1: float, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 <= x2), element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.log(*args, **kwargs)
Overloaded function.
log(x: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Natural logarithm, element-wise.
- Parameters:
x (
SharedImage
) –SharedImage
instance.
log(x: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Natural logarithm, element-wise.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.max(*args, **kwargs)
Overloaded function.
max(x: imfusion._bindings.SharedImage) -> numpy.ndarray[numpy.float64[m, 1]]
Return the list of the maximum elements of images, channel-wise.
- Parameters:
x (
SharedImage
) –SharedImage
instance.
max(x: imfusion._bindings.SharedImageSet) -> numpy.ndarray[numpy.float64[m, 1]]
Return the list of the maximum elements of images, channel-wise.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.maximum(*args, **kwargs)
Overloaded function.
maximum(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Return element-wise maximum of arguments.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImage
) –SharedImage
instance.
maximum(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Return element-wise maximum of arguments.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
maximum(x1: imfusion._bindings.SharedImage, x2: float) -> imfusion._bindings.SharedImage
Return element-wise maximum of arguments.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (float) – scalar value.
maximum(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImageSet
Return element-wise maximum of arguments.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImage
) –SharedImage
instance.
maximum(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Return element-wise maximum of arguments.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
maximum(x1: imfusion._bindings.SharedImageSet, x2: float) -> imfusion._bindings.SharedImageSet
Return element-wise maximum of arguments.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (float) – scalar value.
maximum(x1: float, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Return element-wise maximum of arguments.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImage
) –SharedImage
instance.
maximum(x1: float, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Return element-wise maximum of arguments.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.mean(*args, **kwargs)
Overloaded function.
mean(x: imfusion._bindings.SharedImage) -> numpy.ndarray[numpy.float64[m, 1]]
Return a list of channel-wise average of image elements.
- Parameters:
x (
SharedImage
) –SharedImage
instance.
mean(x: imfusion._bindings.SharedImageSet) -> numpy.ndarray[numpy.float64[m, 1]]
Return a list of channel-wise average of image elements.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.min(*args, **kwargs)
Overloaded function.
min(x: imfusion._bindings.SharedImage) -> numpy.ndarray[numpy.float64[m, 1]]
Return the list of the minimum elements of images, channel-wise.
- Parameters:
x (
SharedImage
) –SharedImage
instance.
min(x: imfusion._bindings.SharedImageSet) -> numpy.ndarray[numpy.float64[m, 1]]
Return the list of the minimum elements of images, channel-wise.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.minimum(*args, **kwargs)
Overloaded function.
minimum(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Return element-wise minimum of arguments.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImage
) –SharedImage
instance.
minimum(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Return element-wise minimum of arguments.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
minimum(x1: imfusion._bindings.SharedImage, x2: float) -> imfusion._bindings.SharedImage
Return element-wise minimum of arguments.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (float) – scalar value.
minimum(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImageSet
Return element-wise minimum of arguments.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImage
) –SharedImage
instance.
minimum(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Return element-wise minimum of arguments.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
minimum(x1: imfusion._bindings.SharedImageSet, x2: float) -> imfusion._bindings.SharedImageSet
Return element-wise minimum of arguments.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (float) – scalar value.
minimum(x1: float, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Return element-wise minimum of arguments.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImage
) –SharedImage
instance.
minimum(x1: float, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Return element-wise minimum of arguments.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.multiply(*args, **kwargs)
Overloaded function.
multiply(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Multiplication, element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImage
) –SharedImage
instance.
multiply(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Multiplication, element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
multiply(x1: imfusion._bindings.SharedImage, x2: float) -> imfusion._bindings.SharedImage
Multiplication, element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (float) – scalar value.
multiply(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImageSet
Multiplication, element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImage
) –SharedImage
instance.
multiply(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Multiplication, element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
multiply(x1: imfusion._bindings.SharedImageSet, x2: float) -> imfusion._bindings.SharedImageSet
Multiplication, element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (float) – scalar value.
multiply(x1: float, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Multiplication, element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImage
) –SharedImage
instance.
multiply(x1: float, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Multiplication, element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.negative(*args, **kwargs)
Overloaded function.
negative(x: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Numerical negative, element-wise.
- Parameters:
x (
SharedImage
) –SharedImage
instance.
negative(x: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Numerical negative, element-wise.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.norm(*args, **kwargs)
Overloaded function.
norm(x: imfusion._bindings.SharedImage, order: object = 2) -> numpy.ndarray[numpy.float64[m, 1]]
Returns the norm of an image instance, channel-wise.
- Parameters:
x (
SharedImage
) –SharedImage
instance.order (int, float, 'inf') – Order of the norm. Default is L2 norm.
norm(x: imfusion._bindings.SharedImageSet, order: object = 2) -> numpy.ndarray[numpy.float64[m, 1]]
Returns the norm of an image instance, channel-wise.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.order (int, float, 'inf') – Order of the norm. Default is L2 norm.
- imfusion.imagemath.not_equal(*args, **kwargs)
Overloaded function.
not_equal(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Return the truth value of (x1 != x2), element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImage
) –SharedImage
instance.
not_equal(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 != x2), element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
not_equal(x1: imfusion._bindings.SharedImage, x2: float) -> imfusion._bindings.SharedImage
Return the truth value of (x1 != x2), element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (float) – scalar value.
not_equal(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 != x2), element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImage
) –SharedImage
instance.
not_equal(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 != x2), element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
not_equal(x1: imfusion._bindings.SharedImageSet, x2: float) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 != x2), element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (float) – scalar value.
not_equal(x1: float, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Return the truth value of (x1 != x2), element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImage
) –SharedImage
instance.
not_equal(x1: float, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Return the truth value of (x1 != x2), element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.power(*args, **kwargs)
Overloaded function.
power(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
The first argument is raised to powers of the second argument, element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImage
) –SharedImage
instance.
power(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
The first argument is raised to powers of the second argument, element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
power(x1: imfusion._bindings.SharedImage, x2: float) -> imfusion._bindings.SharedImage
The first argument is raised to powers of the second argument, element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (float) – scalar value.
power(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImageSet
The first argument is raised to powers of the second argument, element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImage
) –SharedImage
instance.
power(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
The first argument is raised to powers of the second argument, element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
power(x1: imfusion._bindings.SharedImageSet, x2: float) -> imfusion._bindings.SharedImageSet
The first argument is raised to powers of the second argument, element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (float) – scalar value.
power(x1: float, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
The first argument is raised to powers of the second argument, element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImage
) –SharedImage
instance.
power(x1: float, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
The first argument is raised to powers of the second argument, element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.prod(*args, **kwargs)
Overloaded function.
prod(x: imfusion._bindings.SharedImage) -> numpy.ndarray[numpy.float64[m, 1]]
Return a list of channel-wise production of image elements.
- Parameters:
x (
SharedImage
) –SharedImage
instance.
prod(x: imfusion._bindings.SharedImageSet) -> numpy.ndarray[numpy.float64[m, 1]]
Return a list of channel-wise production of image elements.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.sign(*args, **kwargs)
Overloaded function.
sign(x: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Element-wise indication of the sign of image elements.
- Parameters:
x (
SharedImage
) –SharedImage
instance.
sign(x: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Element-wise indication of the sign of image elements.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.sin(*args, **kwargs)
Overloaded function.
sin(x: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Sine, element-wise.
- Parameters:
x (
SharedImage
) –SharedImage
instance.
sin(x: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Sine, element-wise.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.sqrt(*args, **kwargs)
Overloaded function.
sqrt(x: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Square-root operation, element-wise.
- Parameters:
x (
SharedImage
) –SharedImage
instance.
sqrt(x: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Square-root operation, element-wise.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.square(*args, **kwargs)
Overloaded function.
square(x: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Square operation, element-wise.
- Parameters:
x (
SharedImage
) –SharedImage
instance.
square(x: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Square operation, element-wise.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.subtract(*args, **kwargs)
Overloaded function.
subtract(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Addition, element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImage
) –SharedImage
instance.
subtract(x1: imfusion._bindings.SharedImage, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Addition, element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
subtract(x1: imfusion._bindings.SharedImage, x2: float) -> imfusion._bindings.SharedImage
Addition, element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (float) – scalar value.
subtract(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImageSet
Addition, element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImage
) –SharedImage
instance.
subtract(x1: imfusion._bindings.SharedImageSet, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Addition, element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
SharedImageSet
) –SharedImageSet
instance.
subtract(x1: imfusion._bindings.SharedImageSet, x2: float) -> imfusion._bindings.SharedImageSet
Addition, element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (float) – scalar value.
subtract(x1: float, x2: imfusion._bindings.SharedImage) -> imfusion._bindings.SharedImage
Addition, element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImage
) –SharedImage
instance.
subtract(x1: float, x2: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Addition, element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
SharedImageSet
) –SharedImageSet
instance.
- imfusion.imagemath.sum(*args, **kwargs)
Overloaded function.
sum(x: imfusion._bindings.SharedImage) -> numpy.ndarray[numpy.float64[m, 1]]
Return a list of channel-wise sum of image elements.
- Parameters:
x (
SharedImage
) –SharedImage
instance.
sum(x: imfusion._bindings.SharedImageSet) -> numpy.ndarray[numpy.float64[m, 1]]
Return a list of channel-wise sum of image elements.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
imfusion.imagemath.lazy
Lazy evaluation (imagemath.lazy)
- class imfusion.imagemath.lazy.Expression(*args, **kwargs)
Bases:
pybind11_object
Expressions to be used for lazy evaluation.
This class serves as a wrapper for
SharedImage
,SharedImageSet
, and scalar values to be used for lazy evaluation. Lazy evaluation approach delays the actual evaluation until the point that the result is needed. If you prefer the eager evaluation approach, you can directly invoke operations onSharedImage
andSharedImageSet
objects.Here is an example how to use lazy evaluation approach:
>>> from imfusion import _bindings.imagemath as imagemath
Create expressions from
SharedImage
instances:>>> expr1 = imagemath.lazy.Expression(si1) >>> expr2 = imagemath.lazy.Expression(si2)
Any operation with the expressions will return another expression. Expressions are stored in the expression tree and not evaluated yet without any evaluation.
>>> expr3 = expr1 + expr2
Expressions must be explicitly evaluated to get results. Use the
evaluate()
method for this purpose:>>> res = expr3.evaluate()
Here, result is a
SharedImage
instance:>>> print(res) imfusion.SharedImage(FLOAT width: 512 height: 512)
Overloaded function.
__init__(self: imfusion.imagemath.lazy.Expression, shared_image_set: imfusion._bindings.SharedImageSet) -> None
Creates an expression wrapping
SharedImageSet
instance.- Parameters:
shared_image_set (
SharedImageSet
) –SharedImageSet
instance to be wrapped byExpression
.
__init__(self: imfusion.imagemath.lazy.Expression, shared_image: imfusion._bindings.SharedImage) -> None
Creates an expression wrapping
SharedImage
instance.- Parameters:
shared_image (
SharedImage
) –SharedImage
instance to be wrapped byExpression
.
__init__(self: imfusion.imagemath.lazy.Expression, value: float) -> None
Creates an expression wrapping a scalar value.
- Parameters:
value (float) – Scalar value to be wrapped by
Expression
.
__init__(self: imfusion.imagemath.lazy.Expression, channel: int) -> None
Creates an expression wrapping a variable, e.g. a result of another computation which is not yet available during creation of the expr. Currently, only one per expression is allowed.
- Parameters:
channel (int) – The channel of the variable wrapped by
Expression
.
- __abs__(self: Expression) Expression
Expression for absolute value, element-wise.
- __add__(*args, **kwargs)
Overloaded function.
__add__(self: imfusion.imagemath.lazy.Expression, x: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Addition, element-wise.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
__add__(self: imfusion.imagemath.lazy.Expression, x: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
Addition, element-wise.
- Parameters:
x (
SharedImage
) –SharedImage
instance.
__add__(self: imfusion.imagemath.lazy.Expression, x: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
Addition, element-wise.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
__add__(self: imfusion.imagemath.lazy.Expression, x: float) -> imfusion.imagemath.lazy.Expression
Addition, element-wise.
- Parameters:
x (float) – scalar value.
- __eq__(*args, **kwargs)
Overloaded function.
__eq__(self: imfusion.imagemath.lazy.Expression, x: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 == x2), element-wise.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
__eq__(self: imfusion.imagemath.lazy.Expression, x: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 == x2), element-wise.
- Parameters:
x (
SharedImage
) –SharedImage
instance.
__eq__(self: imfusion.imagemath.lazy.Expression, x: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 == x2), element-wise.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
__eq__(self: imfusion.imagemath.lazy.Expression, x: float) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 == x2), element-wise.
- Parameters:
x (float) – scalar value.
- __ge__(*args, **kwargs)
Overloaded function.
__ge__(self: imfusion.imagemath.lazy.Expression, x: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 >= x2), element-wise.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
__ge__(self: imfusion.imagemath.lazy.Expression, x: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 >= x2), element-wise.
- Parameters:
x (
SharedImage
) –SharedImage
instance.
__ge__(self: imfusion.imagemath.lazy.Expression, x: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 >= x2), element-wise.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
__ge__(self: imfusion.imagemath.lazy.Expression, x: float) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 >= x2), element-wise.
- Parameters:
x (float) – scalar value.
- __getitem__(self: Expression, index: int) Expression
This method only works with
SharedImageSet
Expression
instances. Returns aSharedImage
Expression
from aSharedImageSet
Expression
.- Parameters:
index (int) – The index of
SharedImage
Expression
.
- __gt__(*args, **kwargs)
Overloaded function.
__gt__(self: imfusion.imagemath.lazy.Expression, x: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 > x2), element-wise.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
__gt__(self: imfusion.imagemath.lazy.Expression, x: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 > x2), element-wise.
- Parameters:
x (
SharedImage
) –SharedImage
instance.
__gt__(self: imfusion.imagemath.lazy.Expression, x: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 > x2), element-wise.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
__gt__(self: imfusion.imagemath.lazy.Expression, x: float) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 > x2), element-wise.
- Parameters:
x (float) – scalar value.
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: imfusion.imagemath.lazy.Expression, shared_image_set: imfusion._bindings.SharedImageSet) -> None
Creates an expression wrapping
SharedImageSet
instance.- Parameters:
shared_image_set (
SharedImageSet
) –SharedImageSet
instance to be wrapped byExpression
.
__init__(self: imfusion.imagemath.lazy.Expression, shared_image: imfusion._bindings.SharedImage) -> None
Creates an expression wrapping
SharedImage
instance.- Parameters:
shared_image (
SharedImage
) –SharedImage
instance to be wrapped byExpression
.
__init__(self: imfusion.imagemath.lazy.Expression, value: float) -> None
Creates an expression wrapping a scalar value.
- Parameters:
value (float) – Scalar value to be wrapped by
Expression
.
__init__(self: imfusion.imagemath.lazy.Expression, channel: int) -> None
Creates an expression wrapping a variable, e.g. a result of another computation which is not yet available during creation of the expr. Currently, only one per expression is allowed.
- Parameters:
channel (int) – The channel of the variable wrapped by
Expression
.
- __le__(*args, **kwargs)
Overloaded function.
__le__(self: imfusion.imagemath.lazy.Expression, x: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 <= x2), element-wise.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
__le__(self: imfusion.imagemath.lazy.Expression, x: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 <= x2), element-wise.
- Parameters:
x (
SharedImage
) –SharedImage
instance.
__le__(self: imfusion.imagemath.lazy.Expression, x: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 <= x2), element-wise.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
__le__(self: imfusion.imagemath.lazy.Expression, x: float) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 <= x2), element-wise.
- Parameters:
x (float) – scalar value.
- __lt__(*args, **kwargs)
Overloaded function.
__lt__(self: imfusion.imagemath.lazy.Expression, x: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 < x2), element-wise.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
__lt__(self: imfusion.imagemath.lazy.Expression, x: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 < x2), element-wise.
- Parameters:
x (
SharedImage
) –SharedImage
instance.
__lt__(self: imfusion.imagemath.lazy.Expression, x: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 < x2), element-wise.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
__lt__(self: imfusion.imagemath.lazy.Expression, x: float) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 < x2), element-wise.
- Parameters:
x (float) – scalar value.
- __mul__(*args, **kwargs)
Overloaded function.
__mul__(self: imfusion.imagemath.lazy.Expression, x: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Multiplication, element-wise.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
__mul__(self: imfusion.imagemath.lazy.Expression, x: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
Multiplication, element-wise.
- Parameters:
x (
SharedImage
) –SharedImage
instance.
__mul__(self: imfusion.imagemath.lazy.Expression, x: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
Multiplication, element-wise.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
__mul__(self: imfusion.imagemath.lazy.Expression, x: float) -> imfusion.imagemath.lazy.Expression
Multiplication, element-wise.
- Parameters:
x (float) – scalar value.
- __ne__(*args, **kwargs)
Overloaded function.
__ne__(self: imfusion.imagemath.lazy.Expression, x: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 != x2), element-wise.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
__ne__(self: imfusion.imagemath.lazy.Expression, x: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 != x2), element-wise.
- Parameters:
x (
SharedImage
) –SharedImage
instance.
__ne__(self: imfusion.imagemath.lazy.Expression, x: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 != x2), element-wise.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
__ne__(self: imfusion.imagemath.lazy.Expression, x: float) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 != x2), element-wise.
- Parameters:
x (float) – scalar value.
- __neg__(self: Expression) Expression
Expression for numerical negative, element-wise.
- __pow__(*args, **kwargs)
Overloaded function.
__pow__(self: imfusion.imagemath.lazy.Expression, x: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
The first argument is raised to powers of the second argument, element-wise.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
__pow__(self: imfusion.imagemath.lazy.Expression, x: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
The first argument is raised to powers of the second argument, element-wise.
- Parameters:
x (
SharedImage
) –SharedImage
instance.
__pow__(self: imfusion.imagemath.lazy.Expression, x: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
The first argument is raised to powers of the second argument, element-wise.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
__pow__(self: imfusion.imagemath.lazy.Expression, x: float) -> imfusion.imagemath.lazy.Expression
The first argument is raised to powers of the second argument, element-wise.
- Parameters:
x (float) – scalar value.
- __radd__(*args, **kwargs)
Overloaded function.
__radd__(self: imfusion.imagemath.lazy.Expression, arg0: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
__radd__(self: imfusion.imagemath.lazy.Expression, arg0: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
__radd__(self: imfusion.imagemath.lazy.Expression, arg0: float) -> imfusion.imagemath.lazy.Expression
- __req__(*args, **kwargs)
Overloaded function.
__req__(self: imfusion.imagemath.lazy.Expression, arg0: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
__req__(self: imfusion.imagemath.lazy.Expression, arg0: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
__req__(self: imfusion.imagemath.lazy.Expression, arg0: float) -> imfusion.imagemath.lazy.Expression
- __rge__(*args, **kwargs)
Overloaded function.
__rge__(self: imfusion.imagemath.lazy.Expression, arg0: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
__rge__(self: imfusion.imagemath.lazy.Expression, arg0: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
__rge__(self: imfusion.imagemath.lazy.Expression, arg0: float) -> imfusion.imagemath.lazy.Expression
- __rgt__(*args, **kwargs)
Overloaded function.
__rgt__(self: imfusion.imagemath.lazy.Expression, arg0: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
__rgt__(self: imfusion.imagemath.lazy.Expression, arg0: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
__rgt__(self: imfusion.imagemath.lazy.Expression, arg0: float) -> imfusion.imagemath.lazy.Expression
- __rle__(*args, **kwargs)
Overloaded function.
__rle__(self: imfusion.imagemath.lazy.Expression, arg0: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
__rle__(self: imfusion.imagemath.lazy.Expression, arg0: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
__rle__(self: imfusion.imagemath.lazy.Expression, arg0: float) -> imfusion.imagemath.lazy.Expression
- __rlt__(*args, **kwargs)
Overloaded function.
__rlt__(self: imfusion.imagemath.lazy.Expression, arg0: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
__rlt__(self: imfusion.imagemath.lazy.Expression, arg0: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
__rlt__(self: imfusion.imagemath.lazy.Expression, arg0: float) -> imfusion.imagemath.lazy.Expression
- __rmul__(*args, **kwargs)
Overloaded function.
__rmul__(self: imfusion.imagemath.lazy.Expression, arg0: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
__rmul__(self: imfusion.imagemath.lazy.Expression, arg0: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
__rmul__(self: imfusion.imagemath.lazy.Expression, arg0: float) -> imfusion.imagemath.lazy.Expression
- __rne__(*args, **kwargs)
Overloaded function.
__rne__(self: imfusion.imagemath.lazy.Expression, arg0: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
__rne__(self: imfusion.imagemath.lazy.Expression, arg0: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
__rne__(self: imfusion.imagemath.lazy.Expression, arg0: float) -> imfusion.imagemath.lazy.Expression
- __rpow__(*args, **kwargs)
Overloaded function.
__rpow__(self: imfusion.imagemath.lazy.Expression, arg0: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
__rpow__(self: imfusion.imagemath.lazy.Expression, arg0: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
__rpow__(self: imfusion.imagemath.lazy.Expression, arg0: float) -> imfusion.imagemath.lazy.Expression
- __rsub__(*args, **kwargs)
Overloaded function.
__rsub__(self: imfusion.imagemath.lazy.Expression, arg0: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
__rsub__(self: imfusion.imagemath.lazy.Expression, arg0: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
__rsub__(self: imfusion.imagemath.lazy.Expression, arg0: float) -> imfusion.imagemath.lazy.Expression
- __rtruediv__(*args, **kwargs)
Overloaded function.
__rtruediv__(self: imfusion.imagemath.lazy.Expression, arg0: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
__rtruediv__(self: imfusion.imagemath.lazy.Expression, arg0: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
__rtruediv__(self: imfusion.imagemath.lazy.Expression, arg0: float) -> imfusion.imagemath.lazy.Expression
- __sub__(*args, **kwargs)
Overloaded function.
__sub__(self: imfusion.imagemath.lazy.Expression, x: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Addition, element-wise.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
__sub__(self: imfusion.imagemath.lazy.Expression, x: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
Addition, element-wise.
- Parameters:
x (
SharedImage
) –SharedImage
instance.
__sub__(self: imfusion.imagemath.lazy.Expression, x: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
Addition, element-wise.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
__sub__(self: imfusion.imagemath.lazy.Expression, x: float) -> imfusion.imagemath.lazy.Expression
Addition, element-wise.
- Parameters:
x (float) – scalar value.
- __truediv__(*args, **kwargs)
Overloaded function.
__truediv__(self: imfusion.imagemath.lazy.Expression, x: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Division, element-wise.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
__truediv__(self: imfusion.imagemath.lazy.Expression, x: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
Division, element-wise.
- Parameters:
x (
SharedImage
) –SharedImage
instance.
__truediv__(self: imfusion.imagemath.lazy.Expression, x: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
Division, element-wise.
- Parameters:
x (
SharedImageSet
) –SharedImageSet
instance.
__truediv__(self: imfusion.imagemath.lazy.Expression, x: float) -> imfusion.imagemath.lazy.Expression
Division, element-wise.
- Parameters:
x (float) – scalar value.
- argmax(self: Expression) list[ndarray[numpy.int32[4, 1]]]
Return the expression for computing a list of the indices of maximum values, channel-wise. The indices are represented as (x, y, z, image index).
- argmin(self: Expression) list[ndarray[numpy.int32[4, 1]]]
Return the expression for computing a list of the indices of minimum values, channel-wise. The indices are represented as (x, y, z, image index).
- channel_swizzle(self: Expression, indices: list[int]) Expression
Returns the expression which reorders the channels of an image based on the input indices, e.g. indices[0] will correspond to the first channel of the output image.
- Parameters:
indices (List[int]) – List of channels indices to swizzle the channels of the
SharedImage
orSharedImageSet
expressions.
- evaluate(self: Expression) object
Evalute the expression into an image object, which is
SharedImage
orSharedImageSet
instance. Scalar expressions return None when evaluated. Until this method is called, the operands and operations are stored in an expression tree but not evaluated yet.Returns:
SharedImage
orSharedImageSet
instance depending on the end result of the expression tree.
- max(self: Expression) ndarray[numpy.float64[m, 1]]
Return the expression for computing the list of the maximum elements of images, channel-wise.
- mean(self: Expression) ndarray[numpy.float64[m, 1]]
Return the expression for computing a list of channel-wise average of image elements.
- min(self: Expression) ndarray[numpy.float64[m, 1]]
Return the expression for computing the list of the minimum elements of images, channel-wise.
- norm(self: Expression, order: object = 2) ndarray[numpy.float64[m, 1]]
Returns the expression for computing the norm of an image, channel-wise.
- prod(self: Expression) ndarray[numpy.float64[m, 1]]
Return the expression for computing a list of channel-wise production of image elements.
- sum(self: Expression) ndarray[numpy.float64[m, 1]]
Return the expression for computing a list of channel-wise sum of image elements.
- __annotations__ = {}
- __hash__ = None
- __module__ = 'imfusion.imagemath.lazy'
- imfusion.imagemath.lazy.absolute(x: Expression) Expression
Expression for absolute value, element-wise.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.add(*args, **kwargs)
Overloaded function.
add(x1: imfusion.imagemath.lazy.Expression, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Addition, element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
add(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
Addition, element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImage
) –SharedImage
instance.
add(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
Addition, element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImageSet
) –SharedImageSet
instance.
add(x1: imfusion.imagemath.lazy.Expression, x2: float) -> imfusion.imagemath.lazy.Expression
Addition, element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (float) – scalar value.
add(x1: imfusion._bindings.SharedImage, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Addition, element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
add(x1: imfusion._bindings.SharedImageSet, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Addition, element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
add(x1: float, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Addition, element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.arctan2(*args, **kwargs)
Overloaded function.
arctan2(x1: imfusion.imagemath.lazy.Expression, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Trigonometric inverse tangent, element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
arctan2(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
Trigonometric inverse tangent, element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImage
) –SharedImage
instance.
arctan2(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
Trigonometric inverse tangent, element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImageSet
) –SharedImageSet
instance.
arctan2(x1: imfusion.imagemath.lazy.Expression, x2: float) -> imfusion.imagemath.lazy.Expression
Trigonometric inverse tangent, element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (float) – scalar value.
arctan2(x1: imfusion._bindings.SharedImage, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Trigonometric inverse tangent, element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
arctan2(x1: imfusion._bindings.SharedImageSet, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Trigonometric inverse tangent, element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
arctan2(x1: float, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Trigonometric inverse tangent, element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.argmax(x: Expression) list[ndarray[numpy.int32[4, 1]]]
Return the expression for computing a list of the indices of maximum values, channel-wise. The indices are represented as (x, y, z, image index).
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.argmin(x: Expression) list[ndarray[numpy.int32[4, 1]]]
Return the expression for computing a list of the indices of minimum values, channel-wise. The indices are represented as (x, y, z, image index).
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.channel_swizzle(x: Expression, indices: list[int]) Expression
Returns the expression which reorders the channels of an image based on the input indices, e.g. indices[0] will correspond to the first channel of the output image.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.indices (List[int]) – List of channels indices to swizzle the channels of the
SharedImage
orSharedImageSet
expressions.
- imfusion.imagemath.lazy.cos(x: Expression) Expression
Expression for cosine, element-wise.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.divide(*args, **kwargs)
Overloaded function.
divide(x1: imfusion.imagemath.lazy.Expression, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Division, element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
divide(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
Division, element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImage
) –SharedImage
instance.
divide(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
Division, element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImageSet
) –SharedImageSet
instance.
divide(x1: imfusion.imagemath.lazy.Expression, x2: float) -> imfusion.imagemath.lazy.Expression
Division, element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (float) – scalar value.
divide(x1: imfusion._bindings.SharedImage, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Division, element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
divide(x1: imfusion._bindings.SharedImageSet, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Division, element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
divide(x1: float, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Division, element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.equal(*args, **kwargs)
Overloaded function.
equal(x1: imfusion.imagemath.lazy.Expression, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 == x2), element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
equal(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 == x2), element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImage
) –SharedImage
instance.
equal(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 == x2), element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImageSet
) –SharedImageSet
instance.
equal(x1: imfusion.imagemath.lazy.Expression, x2: float) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 == x2), element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (float) – scalar value.
equal(x1: imfusion._bindings.SharedImage, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 == x2), element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
equal(x1: imfusion._bindings.SharedImageSet, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 == x2), element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
equal(x1: float, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 == x2), element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.exp(x: Expression) Expression
Expression for exponential operation, element-wise.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.greater(*args, **kwargs)
Overloaded function.
greater(x1: imfusion.imagemath.lazy.Expression, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 > x2), element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
greater(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 > x2), element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImage
) –SharedImage
instance.
greater(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 > x2), element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImageSet
) –SharedImageSet
instance.
greater(x1: imfusion.imagemath.lazy.Expression, x2: float) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 > x2), element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (float) – scalar value.
greater(x1: imfusion._bindings.SharedImage, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 > x2), element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
greater(x1: imfusion._bindings.SharedImageSet, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 > x2), element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
greater(x1: float, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 > x2), element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.greater_equal(*args, **kwargs)
Overloaded function.
greater_equal(x1: imfusion.imagemath.lazy.Expression, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 >= x2), element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
greater_equal(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 >= x2), element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImage
) –SharedImage
instance.
greater_equal(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 >= x2), element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImageSet
) –SharedImageSet
instance.
greater_equal(x1: imfusion.imagemath.lazy.Expression, x2: float) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 >= x2), element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (float) – scalar value.
greater_equal(x1: imfusion._bindings.SharedImage, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 >= x2), element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
greater_equal(x1: imfusion._bindings.SharedImageSet, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 >= x2), element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
greater_equal(x1: float, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 >= x2), element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.less(*args, **kwargs)
Overloaded function.
less(x1: imfusion.imagemath.lazy.Expression, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 < x2), element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
less(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 < x2), element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImage
) –SharedImage
instance.
less(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 < x2), element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImageSet
) –SharedImageSet
instance.
less(x1: imfusion.imagemath.lazy.Expression, x2: float) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 < x2), element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (float) – scalar value.
less(x1: imfusion._bindings.SharedImage, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 < x2), element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
less(x1: imfusion._bindings.SharedImageSet, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 < x2), element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
less(x1: float, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 < x2), element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.less_equal(*args, **kwargs)
Overloaded function.
less_equal(x1: imfusion.imagemath.lazy.Expression, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 <= x2), element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
less_equal(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 <= x2), element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImage
) –SharedImage
instance.
less_equal(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 <= x2), element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImageSet
) –SharedImageSet
instance.
less_equal(x1: imfusion.imagemath.lazy.Expression, x2: float) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 <= x2), element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (float) – scalar value.
less_equal(x1: imfusion._bindings.SharedImage, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 <= x2), element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
less_equal(x1: imfusion._bindings.SharedImageSet, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 <= x2), element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
less_equal(x1: float, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 <= x2), element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.log(x: Expression) Expression
Expression for natural logarithm, element-wise.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.max(x: Expression) ndarray[numpy.float64[m, 1]]
Return the expression for computing the list of the maximum elements of images, channel-wise.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.maximum(*args, **kwargs)
Overloaded function.
maximum(x1: imfusion.imagemath.lazy.Expression, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return element-wise maximum of arguments.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
maximum(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
Return element-wise maximum of arguments.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImage
) –SharedImage
instance.
maximum(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
Return element-wise maximum of arguments.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImageSet
) –SharedImageSet
instance.
maximum(x1: imfusion.imagemath.lazy.Expression, x2: float) -> imfusion.imagemath.lazy.Expression
Return element-wise maximum of arguments.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (float) – scalar value.
maximum(x1: imfusion._bindings.SharedImage, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return element-wise maximum of arguments.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
maximum(x1: imfusion._bindings.SharedImageSet, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return element-wise maximum of arguments.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
maximum(x1: float, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return element-wise maximum of arguments.
- Parameters:
x1 (float) – scalar value.
x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.mean(x: Expression) ndarray[numpy.float64[m, 1]]
Return the expression for computing a list of channel-wise average of image elements.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.min(x: Expression) ndarray[numpy.float64[m, 1]]
Return the expression for computing the list of the minimum elements of images, channel-wise.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.minimum(*args, **kwargs)
Overloaded function.
minimum(x1: imfusion.imagemath.lazy.Expression, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return element-wise minimum of arguments.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
minimum(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
Return element-wise minimum of arguments.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImage
) –SharedImage
instance.
minimum(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
Return element-wise minimum of arguments.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImageSet
) –SharedImageSet
instance.
minimum(x1: imfusion.imagemath.lazy.Expression, x2: float) -> imfusion.imagemath.lazy.Expression
Return element-wise minimum of arguments.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (float) – scalar value.
minimum(x1: imfusion._bindings.SharedImage, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return element-wise minimum of arguments.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
minimum(x1: imfusion._bindings.SharedImageSet, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return element-wise minimum of arguments.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
minimum(x1: float, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return element-wise minimum of arguments.
- Parameters:
x1 (float) – scalar value.
x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.multiply(*args, **kwargs)
Overloaded function.
multiply(x1: imfusion.imagemath.lazy.Expression, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Multiplication, element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
multiply(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
Multiplication, element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImage
) –SharedImage
instance.
multiply(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
Multiplication, element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImageSet
) –SharedImageSet
instance.
multiply(x1: imfusion.imagemath.lazy.Expression, x2: float) -> imfusion.imagemath.lazy.Expression
Multiplication, element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (float) – scalar value.
multiply(x1: imfusion._bindings.SharedImage, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Multiplication, element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
multiply(x1: imfusion._bindings.SharedImageSet, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Multiplication, element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
multiply(x1: float, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Multiplication, element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.negative(x: Expression) Expression
Expression for numerical negative, element-wise.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.norm(x: Expression, order: object = 2) ndarray[numpy.float64[m, 1]]
Returns the expression for computing the norm of an image, channel-wise.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.order (int, float, 'inf') – Order of the norm. Default is L2 norm.
- imfusion.imagemath.lazy.not_equal(*args, **kwargs)
Overloaded function.
not_equal(x1: imfusion.imagemath.lazy.Expression, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 != x2), element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
not_equal(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 != x2), element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImage
) –SharedImage
instance.
not_equal(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 != x2), element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImageSet
) –SharedImageSet
instance.
not_equal(x1: imfusion.imagemath.lazy.Expression, x2: float) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 != x2), element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (float) – scalar value.
not_equal(x1: imfusion._bindings.SharedImage, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 != x2), element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
not_equal(x1: imfusion._bindings.SharedImageSet, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 != x2), element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
not_equal(x1: float, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Return the truth value of (x1 != x2), element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.power(*args, **kwargs)
Overloaded function.
power(x1: imfusion.imagemath.lazy.Expression, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
The first argument is raised to powers of the second argument, element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
power(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
The first argument is raised to powers of the second argument, element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImage
) –SharedImage
instance.
power(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
The first argument is raised to powers of the second argument, element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImageSet
) –SharedImageSet
instance.
power(x1: imfusion.imagemath.lazy.Expression, x2: float) -> imfusion.imagemath.lazy.Expression
The first argument is raised to powers of the second argument, element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (float) – scalar value.
power(x1: imfusion._bindings.SharedImage, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
The first argument is raised to powers of the second argument, element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
power(x1: imfusion._bindings.SharedImageSet, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
The first argument is raised to powers of the second argument, element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
power(x1: float, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
The first argument is raised to powers of the second argument, element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.prod(x: Expression) ndarray[numpy.float64[m, 1]]
Return the expression for computing a list of channel-wise production of image elements.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.sign(x: Expression) Expression
Expression for element-wise indication of the sign of image elements.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.sin(x: Expression) Expression
Expression for sine, element-wise.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.sqrt(x: Expression) Expression
Expression for the square-root operation, element-wise.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.square(x: Expression) Expression
Expression for the square operation, element-wise.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.subtract(*args, **kwargs)
Overloaded function.
subtract(x1: imfusion.imagemath.lazy.Expression, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Addition, element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
subtract(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImage) -> imfusion.imagemath.lazy.Expression
Addition, element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImage
) –SharedImage
instance.
subtract(x1: imfusion.imagemath.lazy.Expression, x2: imfusion._bindings.SharedImageSet) -> imfusion.imagemath.lazy.Expression
Addition, element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (
SharedImageSet
) –SharedImageSet
instance.
subtract(x1: imfusion.imagemath.lazy.Expression, x2: float) -> imfusion.imagemath.lazy.Expression
Addition, element-wise.
- Parameters:
x1 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.x2 (float) – scalar value.
subtract(x1: imfusion._bindings.SharedImage, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Addition, element-wise.
- Parameters:
x1 (
SharedImage
) –SharedImage
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
subtract(x1: imfusion._bindings.SharedImageSet, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Addition, element-wise.
- Parameters:
x1 (
SharedImageSet
) –SharedImageSet
instance.x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
subtract(x1: float, x2: imfusion.imagemath.lazy.Expression) -> imfusion.imagemath.lazy.Expression
Addition, element-wise.
- Parameters:
x1 (float) – scalar value.
x2 (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
- imfusion.imagemath.lazy.sum(x: Expression) ndarray[numpy.float64[m, 1]]
Return the expression for computing a list of channel-wise sum of image elements.
- Parameters:
x (
Expression
) –Expression
instance wrappingSharedImage
instance,SharedImageSet
instance, or scalar value.
imfusion.labels
This module offers a way of interacting with Labels projects from python.
The central class in this module is the Project
class. It allow you to either create a new local project or load an existing local project:
import imfusion
from imfusion import labels
new_project = labels.Project('New Project', 'path/to/new/project/folder')
existing_project = labels.Project.load('path/to/existing/project')
remote_project = labels.Project.load('http://example.com', '1', 'username', 'password123')
From there you can add new tag definitions, annotation definitions and data to the project:
project.add_tag('NewTag', labels.TagKind.Bool)
project.add_labelmap_layer('NewLabelmap')
project.add_descriptor(imfusion.io.open('/path/to/image')[0])
The Project
instance is also the central way to access this kind of data:
new_tag = project.tags['NewTag'] # can also be indexed with an integer, i.e. tags[0]
new_labelmap = project.labelmap_layers['NewLabelmap'] # can also be indexed with an interger, i.e. labelmap_layers[0]
new_descriptor = project.descriptors[0]
The DataDescriptor
class represents an entry in the project’s database and can be used to access the the entry’s metadata, tags and annotations.
The interface for accessing tags and annotations is the same as in Project
but also offers the additional value
attribute to get the value of the tag / annotation:
name = descriptor.name
shape = (descriptor.n_images, descriptor.n_channels, descriptor.n_slices, descriptor.height, descriptor.width)
new_tag = descriptor.tags['NewTag']
tag_value = descriptor.tags['NewTag'].value
labelmap = descriptor.labelmap_layers['NewLabelmap'].load()
roi = descriptor.roi
image = descriptor.load_image(crop_to_roi=True)
Note
Keep in mind that all modifications made to a local project are stored in memory and will only be saved to disk if you call Project.save()
.
Modifications to remote projects are applied immediately.
Alternatively, you can also use the Project
as a context manager:
with Project('SomeName', /some/path) as project:
... # will automatically save the project when exiting the context if there was no exception
Warning
Changing annotation data is the only exception to this rule. It is written immediately to disk (see :meth:LabelMapLayer.save_new_data`, :meth:LandmarkLayer.save_new_data`, :meth:BoundingBoxLayer.save_new_data`)
- class imfusion.labels.BoundingBox
Bases:
pybind11_object
- property color
- property descriptor
- property index
- property name
- property project
- class imfusion.labels.BoundingBoxAccessor
Bases:
pybind11_object
- __getitem__(*args, **kwargs)
Overloaded function.
__getitem__(self: imfusion.labels._bindings.BoundingBoxAccessor, index: int) -> imfusion.labels._bindings.BoundingBox
Retrieve an entry from this
BoundingBoxAccessor
by its index.- Parameters:
index – Integer index of the entry to be retrieved.
__getitem__(self: imfusion.labels._bindings.BoundingBoxAccessor, name: str) -> imfusion.labels._bindings.BoundingBox
Retrieve an entry from this
BoundingBoxAccessor
by its name.- Parameters:
name – Name of the entry to be retrieved.
__getitem__(self: imfusion.labels._bindings.BoundingBoxAccessor, slice: slice) -> imfusion.labels._bindings.BoundingBoxAccessor
Retrieve multiple entries from this
BoundingBoxAccessor
using Python’s slice notation ([start:stop:step]
).- Parameters:
slice –
slice
instance that specifies the indices of entries to be retrieved. Can be implicitly constructed using Python’s slice notation.
__getitem__(self: imfusion.labels._bindings.BoundingBoxAccessor, selection: list[int]) -> imfusion.labels._bindings.BoundingBoxAccessor
Retrieve multiple entries from this
BoundingBoxAccessor
by using a list of indices.- Parameters:
selection – List of integer indices of the entries to be retrieved.
- __setitem__(*args, **kwargs)
Overloaded function.
__setitem__(self: imfusion.labels._bindings.BoundingBoxAccessor, index: int, value: object) -> None
Change an existing entry by index.
- Parameters:
index – Index of the entry to be changed.
value – Value to set at
index
.
__setitem__(self: imfusion.labels._bindings.BoundingBoxAccessor, name: str, value: object) -> None
Change an existing entry by name.
- Parameters:
name – Name of the entry to be changed.
value – Value to set at
name
.
__setitem__(self: imfusion.labels._bindings.BoundingBoxAccessor, index: slice, value: list) -> None
Change multiple entries denoted using Python’s slice notation (
[start:stop:step]
).
- size(self: BoundingBoxAccessor) int
- property names
List of the names of
BoundingBox
s available through thisBoundingBoxAccessor
- class imfusion.labels.BoundingBoxLayer
Bases:
pybind11_object
- add_annotation(self: BoundingBoxLayer, name: str, color: tuple[int, int, int] = (255, 255, 255)) BoundingBox
Define a new entry in this boundingbox layer. The definition consists of only the name, the actual coordinates for it are stored in the BoxSet.
- add_boundingbox()
add_annotation(self: imfusion.labels._bindings.BoundingBoxLayer, name: str, color: tuple[int, int, int] = (255, 255, 255)) -> imfusion.labels._bindings.BoundingBox
Define a new entry in this boundingbox layer. The definition consists of only the name, the actual coordinates for it are stored in the BoxSet.
- load(self: BoundingBoxLayer) object
- save_new_data(self: BoundingBoxLayer, value: object, lock_token: LockToken = LockToken(token='')) None
Change the data of this layer.
Warning
Beware that, unlike other modifications, new layer data is immediately written to disk, regardless of calls to
Project.save()
.
- property annotations
- property boundingboxes
- property descriptor
- property folder
- property id
- property index
- property name
- property project
- class imfusion.labels.BoundingBoxLayersAccessor
Bases:
pybind11_object
- __getitem__(*args, **kwargs)
Overloaded function.
__getitem__(self: imfusion.labels._bindings.BoundingBoxLayersAccessor, index: int) -> imfusion.labels._bindings.BoundingBoxLayer
Retrieve an entry from this
BoundingBoxLayersAccessor
by its index.- Parameters:
index – Integer index of the entry to be retrieved.
__getitem__(self: imfusion.labels._bindings.BoundingBoxLayersAccessor, name: str) -> imfusion.labels._bindings.BoundingBoxLayer
Retrieve an entry from this
BoundingBoxLayersAccessor
by its name.- Parameters:
name – Name of the entry to be retrieved.
__getitem__(self: imfusion.labels._bindings.BoundingBoxLayersAccessor, slice: slice) -> imfusion.labels._bindings.BoundingBoxLayersAccessor
Retrieve multiple entries from this
BoundingBoxLayersAccessor
using Python’s slice notation ([start:stop:step]
).- Parameters:
slice –
slice
instance that specifies the indices of entries to be retrieved. Can be implicitly constructed using Python’s slice notation.
__getitem__(self: imfusion.labels._bindings.BoundingBoxLayersAccessor, selection: list[int]) -> imfusion.labels._bindings.BoundingBoxLayersAccessor
Retrieve multiple entries from this
BoundingBoxLayersAccessor
by using a list of indices.- Parameters:
selection – List of integer indices of the entries to be retrieved.
- size(self: BoundingBoxLayersAccessor) int
- property active
Return the currently active layer or None if no layer is active.
The active layer is usually only relevant when using Python inside the application. It can be set by the user to defined the layer that can be modified with e.g. the brush tool.
It’s currently not possible to change the active layer through the Python API but only in the UI.
- property names
List of the names of
BoundingBoxLayer
s available through thisBoundingBoxLayersAccessor
- class imfusion.labels.BoxSet(self: BoxSet, names: list[str], n_frames: int)
Bases:
pybind11_object
- add(self: BoxSet, type: str, frame: int, top_left: ndarray[numpy.float64[3, 1]], lower_right: ndarray[numpy.float64[3, 1]]) None
Add a box to the set.
- asdict(self: BoxSet) dict
Convert this AnnotationSet into a dict. Modifying the dict does not reflect on the AnnotationSet.
- static from_descriptor(descriptor: Descriptor, layer_name: str) BoxSet
Create a BoxSet tailored to a specific annotation layer in a descriptor.
- type(*args, **kwargs)
Overloaded function.
type(self: imfusion.labels._bindings.BoxSet, type: str) -> imfusion.labels._bindings.BoxSet
Select only the points that belong to the specified type.
type(self: imfusion.labels._bindings.BoxSet, type: int) -> imfusion.labels._bindings.BoxSet
Select only the points that belong to the specified type.
- class imfusion.labels.DataType(self: DataType, value: int)
Bases:
pybind11_object
Enum for specifying what is considered valid data in the project.
Members:
SingleChannelImages : Consider 2D greyscale images as valid data.
MultiChannelImages : Consider 2D color images as valid data.
SingleChannelVolumes : Consider 3D greyscale images as valid data.
MultiChannelVolumes : Consider 3D color images as valid data.
AnyDataType : Consider any kind of image data as valid data.
- AnyDataType = DataType.AnyDataType
- MultiChannelImages = DataType.MultiChannelImages
- MultiChannelVolumes = DataType.MultiChannelVolumes
- SingleChannelImages = DataType.SingleChannelImages
- SingleChannelVolumes = DataType.SingleChannelVolumes
- property name
- property value
- class imfusion.labels.Descriptor
Bases:
pybind11_object
Class representing an entry in the project’s database. It holds, amongst other things, meta data about the image, annotations and the location of the image.
- consider_frame_annotated(self: Descriptor, frame: int, annotated: bool) None
- is_considered_annotated(self: Descriptor, frame: object = None) bool
- load_image(self: Descriptor, crop_to_roi: bool) SharedImageSet
- load_thumbnail(self: Descriptor, generate: bool = True) SharedImageSet
Return the image thumbnail as a SharedImageSet.
- Parameters:
generate (bool) – Whether to generate the thumbnail if it’s missing. If this is False, the method will return None for missing thumbnails.
- lock(self: Descriptor) LockToken
- property boundingbox_layers
- property byte_size
- property comments
- property grouping
- property has_data
- property height
- property identifier
- property import_time
- property is_locked
- property labelmap_layers
- property landmark_layers
- property latest_edit_time
- property load_path
- property modality
- property n_channels
- property n_images
- property n_slices
- property name
- property original_data_path
- property own_copy
- property patient_name
- property project
- property region_of_interest
- property roi
- property scale
- property series_instance_uid
- property shift
- property spacing
- property sub_file_id
- property tags
- property thumbnail_path
- property top_down
- property type
- property width
- class imfusion.labels.Label(self: Label, name: str, kind: LayerKind, color: tuple[int, int, int] | None = None, value: int | None = None)
Bases:
pybind11_object
A single Label of
Layer
that defines its name and color among other things.- property color
- property id
- property kind
- property name
- property value
- class imfusion.labels.LabelLegacy
Bases:
pybind11_object
- property color
- property descriptor
- property index
- property name
- property project
- property value
- class imfusion.labels.LabelMapLayer
Bases:
pybind11_object
- add_annotation(self: LabelMapLayer, name: str, value: int, color: tuple[int, int, int] | None = None) LabelLegacy
Define a new entry in this labelmap layer. A label is represented by a name and a corresponding integer value for designating voxels in the labelmap.
- add_label()
add_annotation(self: imfusion.labels._bindings.LabelMapLayer, name: str, value: int, color: Optional[tuple[int, int, int]] = None) -> imfusion.labels._bindings.LabelLegacy
Define a new entry in this labelmap layer. A label is represented by a name and a corresponding integer value for designating voxels in the labelmap.
- create_empty_labelmap(self: LabelMapLayer) object
Create an empty labelmap that is compatible with this layer. The labelmap will have the same size and meta data as the image. The labelmap is completely independent of the layer and does not replace the existing labelmap of the layer! To use this labelmap for the layer, call
LabelMapLayer.save_new_data()
.
- has_data(self: LabelMapLayer) bool
Return whether the labelmap exists and is not empty.
- load(self: LabelMapLayer) object
Load the labelmap as a SharedImagetSet. If the labelmap is completely empty, None is returned. To create a new labelmap use
LabelMapLayer.create_empty_labelmap()
.
- path(self: LabelMapLayer) str
Returns the path where the labelmap is stored on disk. Empty for remote projects.
- save_new_data(self: LabelMapLayer, value: object, lock_token: LockToken = LockToken(token='')) None
Change the data of this layer.
Warning
Beware that, unlike other modifications, new layer data is immediately written to disk, regardless of calls to
Project.save()
.
- thumbnail_path(self: LabelMapLayer) str
Returns the path where the labelmap thumbnail is stored on disk. Empty for remote projects.
- property annotations
- property descriptor
- property folder
- property id
- property index
- property labels
- property name
- property project
- class imfusion.labels.LabelMapsAccessor
Bases:
pybind11_object
- __getitem__(*args, **kwargs)
Overloaded function.
__getitem__(self: imfusion.labels._bindings.LabelMapsAccessor, index: int) -> imfusion.labels._bindings.LabelMapLayer
Retrieve an entry from this
LabelMapsAccessor
by its index.- Parameters:
index – Integer index of the entry to be retrieved.
__getitem__(self: imfusion.labels._bindings.LabelMapsAccessor, name: str) -> imfusion.labels._bindings.LabelMapLayer
Retrieve an entry from this
LabelMapsAccessor
by its name.- Parameters:
name – Name of the entry to be retrieved.
__getitem__(self: imfusion.labels._bindings.LabelMapsAccessor, slice: slice) -> imfusion.labels._bindings.LabelMapsAccessor
Retrieve multiple entries from this
LabelMapsAccessor
using Python’s slice notation ([start:stop:step]
).- Parameters:
slice –
slice
instance that specifies the indices of entries to be retrieved. Can be implicitly constructed using Python’s slice notation.
__getitem__(self: imfusion.labels._bindings.LabelMapsAccessor, selection: list[int]) -> imfusion.labels._bindings.LabelMapsAccessor
Retrieve multiple entries from this
LabelMapsAccessor
by using a list of indices.- Parameters:
selection – List of integer indices of the entries to be retrieved.
- size(self: LabelMapsAccessor) int
- property active
Return the currently active layer or None if no layer is active.
The active layer is usually only relevant when using Python inside the application. It can be set by the user to defined the layer that can be modified with e.g. the brush tool.
It’s currently not possible to change the active layer through the Python API but only in the UI.
- property names
List of the names of
LabelMap
s available through thisLabelMapsAccessor
- class imfusion.labels.LabelsAccessor
Bases:
pybind11_object
Like a
list
ofLabel
, but allows indexing by index or name.- __getitem__(*args, **kwargs)
Overloaded function.
__getitem__(self: imfusion.labels._bindings.LabelsAccessor, index: int) -> imfusion.labels._bindings.Label
Retrieve an entry from this
LabelsAccessor
by its index.- Args:
index: Integer index of the entry to be retrieved.
__getitem__(self: imfusion.labels._bindings.LabelsAccessor, name: str) -> imfusion.labels._bindings.Label
Retrieve an entry from this
LabelsAccessor
by its name.- Args:
name: Name of the entry to be retrieved.
__getitem__(self: imfusion.labels._bindings.LabelsAccessor, slice: slice) -> imfusion.labels._bindings.LabelsAccessor
Retrieve multiple entries from this
LabelsAccessor
using Python’s slice notation ([start:stop:step]
).- Args:
slice:
slice
instance that specifies the indices of entries to be retrieved. Can be implicitly constructed using Python’s slice notation.
- property names
List of the names of
Label
s available through thisLabelsAccessor
- class imfusion.labels.LabelsAccessorLegacy
Bases:
pybind11_object
- __getitem__(*args, **kwargs)
Overloaded function.
__getitem__(self: imfusion.labels._bindings.LabelsAccessorLegacy, index: int) -> imfusion.labels._bindings.LabelLegacy
Retrieve an entry from this
LabelsAccessorLegacy
by its index.- Parameters:
index – Integer index of the entry to be retrieved.
__getitem__(self: imfusion.labels._bindings.LabelsAccessorLegacy, name: str) -> imfusion.labels._bindings.LabelLegacy
Retrieve an entry from this
LabelsAccessorLegacy
by its name.- Parameters:
name – Name of the entry to be retrieved.
__getitem__(self: imfusion.labels._bindings.LabelsAccessorLegacy, slice: slice) -> imfusion.labels._bindings.LabelsAccessorLegacy
Retrieve multiple entries from this
LabelsAccessorLegacy
using Python’s slice notation ([start:stop:step]
).- Parameters:
slice –
slice
instance that specifies the indices of entries to be retrieved. Can be implicitly constructed using Python’s slice notation.
__getitem__(self: imfusion.labels._bindings.LabelsAccessorLegacy, selection: list[int]) -> imfusion.labels._bindings.LabelsAccessorLegacy
Retrieve multiple entries from this
LabelsAccessorLegacy
by using a list of indices.- Parameters:
selection – List of integer indices of the entries to be retrieved.
- __setitem__(*args, **kwargs)
Overloaded function.
__setitem__(self: imfusion.labels._bindings.LabelsAccessorLegacy, index: int, value: object) -> None
Change an existing entry by index.
- Parameters:
index – Index of the entry to be changed.
value – Value to set at
index
.
__setitem__(self: imfusion.labels._bindings.LabelsAccessorLegacy, name: str, value: object) -> None
Change an existing entry by name.
- Parameters:
name – Name of the entry to be changed.
value – Value to set at
name
.
__setitem__(self: imfusion.labels._bindings.LabelsAccessorLegacy, index: slice, value: list) -> None
Change multiple entries denoted using Python’s slice notation (
[start:stop:step]
).
- size(self: LabelsAccessorLegacy) int
- property names
List of the names of
LabelLegacy
s available through thisLabelsAccessorLegacy
- class imfusion.labels.Landmark
Bases:
pybind11_object
- property color
- property descriptor
- property index
- property name
- property project
- class imfusion.labels.LandmarkLayer
Bases:
pybind11_object
- add_annotation(self: LandmarkLayer, name: str, color: tuple[int, int, int] = (255, 255, 255)) Landmark
Define a new entry in this landmark layer. The definition consists of only the name, the actual coordinates for it are stored in the LandmarkSet.
- add_landmark()
add_annotation(self: imfusion.labels._bindings.LandmarkLayer, name: str, color: tuple[int, int, int] = (255, 255, 255)) -> imfusion.labels._bindings.Landmark
Define a new entry in this landmark layer. The definition consists of only the name, the actual coordinates for it are stored in the LandmarkSet.
- load(self: LandmarkLayer) object
- save_new_data(self: LandmarkLayer, value: object, lock_token: LockToken = LockToken(token='')) None
Change the data of this layer.
Warning
Beware that, unlike other modifications, new layer data is immediately written to disk, regardless of calls to
Project.save()
.
- property annotations
- property descriptor
- property folder
- property id
- property index
- property landmarks
- property name
- property project
- class imfusion.labels.LandmarkLayersAccessor
Bases:
pybind11_object
- __getitem__(*args, **kwargs)
Overloaded function.
__getitem__(self: imfusion.labels._bindings.LandmarkLayersAccessor, index: int) -> imfusion.labels._bindings.LandmarkLayer
Retrieve an entry from this
LandmarkLayersAccessor
by its index.- Parameters:
index – Integer index of the entry to be retrieved.
__getitem__(self: imfusion.labels._bindings.LandmarkLayersAccessor, name: str) -> imfusion.labels._bindings.LandmarkLayer
Retrieve an entry from this
LandmarkLayersAccessor
by its name.- Parameters:
name – Name of the entry to be retrieved.
__getitem__(self: imfusion.labels._bindings.LandmarkLayersAccessor, slice: slice) -> imfusion.labels._bindings.LandmarkLayersAccessor
Retrieve multiple entries from this
LandmarkLayersAccessor
using Python’s slice notation ([start:stop:step]
).- Parameters:
slice –
slice
instance that specifies the indices of entries to be retrieved. Can be implicitly constructed using Python’s slice notation.
__getitem__(self: imfusion.labels._bindings.LandmarkLayersAccessor, selection: list[int]) -> imfusion.labels._bindings.LandmarkLayersAccessor
Retrieve multiple entries from this
LandmarkLayersAccessor
by using a list of indices.- Parameters:
selection – List of integer indices of the entries to be retrieved.
- size(self: LandmarkLayersAccessor) int
- property active
Return the currently active layer or None if no layer is active.
The active layer is usually only relevant when using Python inside the application. It can be set by the user to defined the layer that can be modified with e.g. the brush tool.
It’s currently not possible to change the active layer through the Python API but only in the UI.
- property names
List of the names of
LandmarkLayer
s available through thisLandmarkLayersAccessor
- class imfusion.labels.LandmarkSet(self: LandmarkSet, names: list[str], n_frames: int)
Bases:
pybind11_object
- add(self: LandmarkSet, type: str, frame: int, world: ndarray[numpy.float64[3, 1]]) None
Add a keypoint to the set.
- asdict(self: LandmarkSet) dict
Convert this AnnotationSet into a dict. Modifying the dict does not reflect on the AnnotationSet.
- frame(self: LandmarkSet, which: int) LandmarkSet
Select only the points that belong to the specified frame.
- static from_descriptor(descriptor: Descriptor, layer_name: str) LandmarkSet
Create a LandmarkSet tailored to a specific annotation layer in a descriptor.
- type(*args, **kwargs)
Overloaded function.
type(self: imfusion.labels._bindings.LandmarkSet, type: str) -> imfusion.labels._bindings.LandmarkSet
Select only the points that belong to the specified type.
type(self: imfusion.labels._bindings.LandmarkSet, type: int) -> imfusion.labels._bindings.LandmarkSet
Select only the points that belong to the specified type.
- class imfusion.labels.LandmarksAccessor
Bases:
pybind11_object
- __getitem__(*args, **kwargs)
Overloaded function.
__getitem__(self: imfusion.labels._bindings.LandmarksAccessor, index: int) -> imfusion.labels._bindings.Landmark
Retrieve an entry from this
LandmarksAccessor
by its index.- Parameters:
index – Integer index of the entry to be retrieved.
__getitem__(self: imfusion.labels._bindings.LandmarksAccessor, name: str) -> imfusion.labels._bindings.Landmark
Retrieve an entry from this
LandmarksAccessor
by its name.- Parameters:
name – Name of the entry to be retrieved.
__getitem__(self: imfusion.labels._bindings.LandmarksAccessor, slice: slice) -> imfusion.labels._bindings.LandmarksAccessor
Retrieve multiple entries from this
LandmarksAccessor
using Python’s slice notation ([start:stop:step]
).- Parameters:
slice –
slice
instance that specifies the indices of entries to be retrieved. Can be implicitly constructed using Python’s slice notation.
__getitem__(self: imfusion.labels._bindings.LandmarksAccessor, selection: list[int]) -> imfusion.labels._bindings.LandmarksAccessor
Retrieve multiple entries from this
LandmarksAccessor
by using a list of indices.- Parameters:
selection – List of integer indices of the entries to be retrieved.
- __setitem__(*args, **kwargs)
Overloaded function.
__setitem__(self: imfusion.labels._bindings.LandmarksAccessor, index: int, value: object) -> None
Change an existing entry by index.
- Parameters:
index – Index of the entry to be changed.
value – Value to set at
index
.
__setitem__(self: imfusion.labels._bindings.LandmarksAccessor, name: str, value: object) -> None
Change an existing entry by name.
- Parameters:
name – Name of the entry to be changed.
value – Value to set at
name
.
__setitem__(self: imfusion.labels._bindings.LandmarksAccessor, index: slice, value: list) -> None
Change multiple entries denoted using Python’s slice notation (
[start:stop:step]
).
- size(self: LandmarksAccessor) int
- property names
List of the names of
Landmark
s available through thisLandmarksAccessor
- class imfusion.labels.Layer(self: Layer, name: str, kind: LayerKind, labels: list[Label] = [])
Bases:
pybind11_object
A single layer that defines which labels can be annotated for each
Descriptor
.- property id
- property kind
- property labels
- property name
- class imfusion.labels.LayerKind(self: LayerKind, value: int)
Bases:
pybind11_object
The kind of a layer defines what can be labelled in that layer.
Members:
PIXELWISE
BOUNDINGBOX
LANDMARK
- BOUNDINGBOX = <LayerKind.BOUNDINGBOX: 1>
- LANDMARK = <LayerKind.LANDMARK: 2>
- PIXELWISE = <LayerKind.PIXELWISE: 0>
- property name
- property value
- class imfusion.labels.LayersAccessor
Bases:
pybind11_object
Like a
list
ofLayer
, but allows indexing by index or name.- __getitem__(*args, **kwargs)
Overloaded function.
__getitem__(self: imfusion.labels._bindings.LayersAccessor, index: int) -> imfusion.labels._bindings.Layer
Retrieve an entry from this
LayersAccessor
by its index.- Args:
index: Integer index of the entry to be retrieved.
__getitem__(self: imfusion.labels._bindings.LayersAccessor, name: str) -> imfusion.labels._bindings.Layer
Retrieve an entry from this
LayersAccessor
by its name.- Args:
name: Name of the entry to be retrieved.
__getitem__(self: imfusion.labels._bindings.LayersAccessor, slice: slice) -> imfusion.labels._bindings.LayersAccessor
Retrieve multiple entries from this
LayersAccessor
using Python’s slice notation ([start:stop:step]
).- Args:
slice:
slice
instance that specifies the indices of entries to be retrieved. Can be implicitly constructed using Python’s slice notation.
- property names
List of the names of
Layer
s available through thisLayersAccessor
- class imfusion.labels.LockToken
Bases:
pybind11_object
A token representing a lock of a DataDescriptor.
Only the holder of the token can modify the layers of a locked
Descriptor
. Locking is only supported in remote projects. Local projects ignore the locking mechanism. A LockToken can be acquired throughlock()
. It can be used as a context manager so that it is unlocked automatically, when exiting the context. Tokens expire automatically after a certain time depending on the server (default: after 5 minutes).descriptor = project.descriptors[0] with descriptor.lock() as lock: ...
- class imfusion.labels.Project(self: imfusion.labels._bindings.Project, name: str, project_path: str, data_type: imfusion.labels._bindings.DataType = <DataType.AnyDataType: 15>)
Bases:
pybind11_object
Class that represents a Labels project. A project holds all information regarding defined annotations and data samples
Create a new local project. Doing so will also create a new project folder on disk.
- Parameters:
- add_boundingbox_layer(self: Project, name: str) BoundingBoxLayer
Define a new boundingbox layer for this project.
- Parameters:
name (str) – Name of the new boundingbox layer.
- add_descriptor(*args, **kwargs)
Overloaded function.
add_descriptor(self: imfusion.labels._bindings.Project, shared_image_set: imfusion._bindings.SharedImageSet, name: str = ‘’, own_copy: bool = False) -> object
Create a new entry in the project’s database from a given image. For local project, the descriptor to the dataset is returned immediately. For remote project, only the identifier of the descriptor is returned. The actual dataset will only become available after a call to sync().
- Parameters:
name (str) – Name of the new database entry.
shared_image_set (SharedImageSet) – Image for which the new entry will be created.
own_copy (bool) – If True, Labels will save a copy of the image in the project folder. Automatically set to True if the image does not have a DataSourceComponent, as this implies that is was created rather then loaded.
add_descriptor(self: imfusion.labels._bindings.Project, name: str, shared_image_set: imfusion._bindings.SharedImageSet, own_copy: bool = False) -> object
Create a new entry in the project’s database from a given image. For local project, the descriptor to the dataset is returned immediately. For remote project, only the identifier of the descriptor is returned. The actual dataset will only become available after a call to sync().
- Parameters:
name (str) – Name of the new database entry.
shared_image_set (SharedImageSet) – Image for which the new entry will be created.
own_copy (bool) – If True, Labels will save a copy of the image in the project folder. Automatically set to True if the image does not have a DataSourceComponent, as this implies that is was created rather then loaded.
- add_labelmap_layer(self: Project, name: str) LabelMapLayer
Define a new labelmap layer for this project.
- Parameters:
name (str) – Name of the new labelmap layer.
- add_landmark_layer(self: Project, name: str) LandmarkLayer
Define a new landmark layer for this project.
- Parameters:
name (str) – Name of the new landmark layer.
- add_tag(self: Project, name: str, kind: TagKind, color: tuple[int, int, int] = (255, 255, 255), options: list[str] = []) TagLegacy
Define a new tag for this project.
- static create(settings: ProjectSettings, path: str = '', username: str = '', password: str = '') Project
Create a new project with the given settings.
path
can be either a path or URL.Passing a folder will create a local project. The folder must be empty otherwise an exception is raised.
When passing a http(s) URL, it must point to the base URL of a Labels server (e.g. https://example.com and not https://example.com/api/v1/projects). Additionally, a valid username and password must be specified. The server might reject a project, e.g. because a project with the same name already exists. In this case, an exception is raised.
- delete_descriptors(self: Project, descriptors: list[Descriptor]) None
“Remove the given descriptors from the project.
- Parameters:
descriptors (list[Descriptors]) – list of descriptors that should be deleted from the project.
- edit(self: Project, arg0: ProjectSettings) None
Edit the project settings by applying the given settings.
Editing a project is a potentially destructive action that cannot be reverted.
When adding new tags, layers or label their “id” field should be empty (an id will be automatically assigned).
Warning
Remote project are not edited in-place at the moment. After calling this method, you need to reload the project from the server. Otherwise, the project settings will be out of sync with the server.
- static load(path: str, project_id: str | None = None, username: str | None = None, password: str | None = None) Project
Load an existing project from disk or from a remote server.
- refresh_access_token(self: Project) None
Refresh the access token of a remote project. Access tokens expire after a predefined period of time, and need to be refreshed in order to make further requests.
- settings(self: Project) ProjectSettings
Return the current settings of a project.
The settings are not connected to the project, so changing the settings object does not change the project. Use
edit()
to apply new settings.
- sync(self: Project) int
Synchronize the local state of a remote project. Any “event” that occured between the last sync() call and this one are replayed locally, such that the local Project reflects the last known state of the project on the server. An “event” refers to any change being made on the project data by any client (including this one), such as a dataset being added or deleted, a new label map being uploaded, a tag value being changed, etc.
Returns the number of events applied to the project.
- property boundingbox_layers
Returns an
BoundingBoxLayersAccessor
to the boundingbox layers defined in the project.
- property configuration
- property data_type
- property descriptors
- property grouping_hierachy
- property id
Return the unique id of a remote project.
- property is_local
Returns whether the project is local
- property is_remote
Returns whether the project is remote
- property labelmap_layers
Returns an Accessor to the labelmap layers defined in the project.
- property landmark_layers
Returns an
LandmarkLayerAccessor
to the landmark layers defined in the project.
- property path
- property tags
Returns an Accessor to the tags defined in the project.
- class imfusion.labels.ProjectSettings(self: ProjectSettings, name: str, tags: list[Tag] = [], layers: list[Layer] = [])
Bases:
pybind11_object
Contains the invididual elements that make up a project definition.
- add_layer(self: ProjectSettings, arg0: Layer) None
Add a new layer to the settings.
- add_tag(self: ProjectSettings, arg0: Tag) None
Add a new tag to the settings.
- remove_layer(self: ProjectSettings, arg0: Layer) None
- remove_tag(self: ProjectSettings, arg0: Tag) None
- property layers
- property name
- property tags
- class imfusion.labels.Tag(self: Tag, name: str, kind: TagKind, color: tuple[int, int, int] | None = None, options: list = [])
Bases:
pybind11_object
A Tag definition. Tag values can be set on a
Descriptor
according to this definition.- property color
- property id
- property kind
- property name
- property options
- class imfusion.labels.TagKind(self: TagKind, value: int)
Bases:
pybind11_object
Enum for differentiating different kinds of tags.
Members:
Bool : Tag that stores a single boolean value.
Enum : Tag that stores a list of string options.
Float : Tag that stores a single float value.
- Bool = <TagKind.Bool: 0>
- Enum = <TagKind.Enum: 1>
- Float = <TagKind.Float: 2>
- property name
- property value
- class imfusion.labels.TagLegacy
Bases:
pybind11_object
- add_option(self: TagLegacy, option: str) None
Add a new value option for this tag (only works with enum tags).
- Parameters:
option – New option to be added to this tag.
- property color
- property descriptor
- property id
- property index
- property kind
- property locked
- property name
- property options
- property project
- property value
- class imfusion.labels.TagsAccessor
Bases:
pybind11_object
Like a
list
ofTag
, but allows indexing by index or name.- __getitem__(*args, **kwargs)
Overloaded function.
__getitem__(self: imfusion.labels._bindings.TagsAccessor, index: int) -> imfusion.labels._bindings.Tag
Retrieve an entry from this
TagsAccessor
by its index.- Args:
index: Integer index of the entry to be retrieved.
__getitem__(self: imfusion.labels._bindings.TagsAccessor, name: str) -> imfusion.labels._bindings.Tag
Retrieve an entry from this
TagsAccessor
by its name.- Args:
name: Name of the entry to be retrieved.
__getitem__(self: imfusion.labels._bindings.TagsAccessor, slice: slice) -> imfusion.labels._bindings.TagsAccessor
Retrieve multiple entries from this
TagsAccessor
using Python’s slice notation ([start:stop:step]
).- Args:
slice:
slice
instance that specifies the indices of entries to be retrieved. Can be implicitly constructed using Python’s slice notation.
- property names
List of the names of
Tag
s available through thisTagsAccessor
- class imfusion.labels.TagsAccessorLegacy
Bases:
pybind11_object
- __getitem__(*args, **kwargs)
Overloaded function.
__getitem__(self: imfusion.labels._bindings.TagsAccessorLegacy, index: int) -> imfusion.labels._bindings.TagLegacy
Retrieve an entry from this
TagsAccessorLegacy
by its index.- Parameters:
index – Integer index of the entry to be retrieved.
__getitem__(self: imfusion.labels._bindings.TagsAccessorLegacy, name: str) -> imfusion.labels._bindings.TagLegacy
Retrieve an entry from this
TagsAccessorLegacy
by its name.- Parameters:
name – Name of the entry to be retrieved.
__getitem__(self: imfusion.labels._bindings.TagsAccessorLegacy, slice: slice) -> imfusion.labels._bindings.TagsAccessorLegacy
Retrieve multiple entries from this
TagsAccessorLegacy
using Python’s slice notation ([start:stop:step]
).- Parameters:
slice –
slice
instance that specifies the indices of entries to be retrieved. Can be implicitly constructed using Python’s slice notation.
__getitem__(self: imfusion.labels._bindings.TagsAccessorLegacy, selection: list[int]) -> imfusion.labels._bindings.TagsAccessorLegacy
Retrieve multiple entries from this
TagsAccessorLegacy
by using a list of indices.- Parameters:
selection – List of integer indices of the entries to be retrieved.
- __setitem__(*args, **kwargs)
Overloaded function.
__setitem__(self: imfusion.labels._bindings.TagsAccessorLegacy, index: int, value: object) -> None
Change an existing entry by index.
- Parameters:
index – Index of the entry to be changed.
value – Value to set at
index
.
__setitem__(self: imfusion.labels._bindings.TagsAccessorLegacy, name: str, value: object) -> None
Change an existing entry by name.
- Parameters:
name – Name of the entry to be changed.
value – Value to set at
name
.
__setitem__(self: imfusion.labels._bindings.TagsAccessorLegacy, index: slice, value: list) -> None
Change multiple entries denoted using Python’s slice notation (
[start:stop:step]
).
- size(self: TagsAccessorLegacy) int
- property names
List of the names of
TagLegacy
s available through thisTagsAccessorLegacy
- imfusion.labels.wraps(wrapped, assigned=('__module__', '__name__', '__qualname__', '__doc__', '__annotations__'), updated=('__dict__',))
Decorator factory to apply update_wrapper() to a wrapper function
Returns a decorator that invokes update_wrapper() with the decorated function as the wrapper argument and the arguments to wraps() as the remaining arguments. Default arguments are as for update_wrapper(). This is a convenience function to simplify applying partial() to update_wrapper().
imfusion.machinelearning
imfusion.machinelearning - Bindings for Machine Learning
This submodule provides Python bindings for the C++ ImFusion classes that can be used during the training of machine learning models.
- class imfusion.machinelearning.AbstractOperation(self: imfusion.machinelearning._bindings.Operation, name: str, processing_policy: imfusion.machinelearning._bindings.Operation.ProcessingPolicy = <ProcessingPolicy.EVERYTHING_BUT_LABELS: 0>, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None)
Bases:
Operation
- class imfusion.machinelearning.AddCenterBoxOperation(*args, **kwargs)
Bases:
Operation
Add an additional channel to the input image with a binary box at its center. The purpose of that operation is to give a location information to the model.
- Parameters:
box_half_width – Half-width of the box in pixels.
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.AddCenterBoxOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.AddCenterBoxOperation, box_half_width: int, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.AddDegradedLabelAsChannelOperation(*args, **kwargs)
Bases:
Operation
Append a channel to the image that contains a degraded version of the label. Given provided blob coordinates, the channel is zero except for at blobs at specified locations. The nonzero values are positive/negative based on whether the values are inside/outside of a label that has been eroded/dilated based on the
label_dilation
parameter.- Parameters:
blob_radius – Radius of each blob, in pixel coordinates. Default: 5.0
invert – Extra channel is positive/negative based on the label values except for at the blobs, where it is zero. Default: False
blob_coordinates – Centers of the blobs in pixel coordinates. Default: []
only_positive – If true, output channel is clamped to zero from below. Default: False
label_dilation – The dilation (if positive) or erosion (if negative), none if zero. Default: 0.0
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.AddDegradedLabelAsChannelOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.AddDegradedLabelAsChannelOperation, blob_radius: float = 5.0, invert: bool = False, blob_coordinates: list[numpy.ndarray[numpy.float64[3, 1]]] = [], only_positive: bool = False, label_dilation: float = 0.0, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.AddPixelwisePredictionChannelOperation(*args, **kwargs)
Bases:
Operation
Run an existing pixelwise model and add result to the input image as additional channels. The prediction is automatically resampled to the input image resolution.
- Parameters:
config_path – path to the YAML configuration file of the pixelwise model
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.AddPixelwisePredictionChannelOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.AddPixelwisePredictionChannelOperation, config_path: str, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.AddPositionChannelOperation(*args, **kwargs)
Bases:
Operation
Add additional channels with the position of the pixels. Execute the algorithm AddPositionAsChannelAlgorithm internally, and uses the same configuration (parameter names and values).
- Parameters:
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.AddPositionChannelOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.AddPositionChannelOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.AddRandomNoiseOperation(*args, **kwargs)
Bases:
Operation
Apply a pixelwise random noise to the image intensities.
Fortype == "uniform"
: noise is drawn in \([-\textnormal{intensity}, \textnormal{intensity}]\).Fortype == "gaussian
: noise is drawn from a Gaussian with zero mean and standard deviation equal to \(\textnormal{intensity}\).Fortype == "gamma"
: noise is drawn from a Gamma distribution with \(k = \theta = \textnormal{intensity}\) (note that this noise has a mean of 1.0 so it is biased).Fortype == "shot"
: noise is drawn from a Gaussian with zero mean and standard deviation equal to \(\textnormal{intensity} * \sqrt{\textnormal{pixel_value}}\).- Parameters:
type – Distribution of the noise (‘uniform’, ‘gaussian’, ‘gamma’, ‘shot’). Default: ‘uniform’
intensity – Value related to the standard deviation of the generated noise. Default: 0.2
probability – Value in [0.0, 1.0] indicating the probability of this operation to be performed. Default: 1.0
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.AddRandomNoiseOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.AddRandomNoiseOperation, type: str = ‘uniform’, intensity: float = 0.2, probability: float = 1.0, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.AdjustShiftScaleOperation(*args, **kwargs)
Bases:
Operation
Apply a shift and scale to each channel of the input image. If shift and scale are vectors with multiple values, then for each channel c, \(\textnormal{output}_c = (\textnormal{input}_c + \textnormal{shift}_c) / \textnormal{scale}_c\). If shift and scale have a single value, then for each channel c, \(\textnormal{output}_c = (\textnormal{input} + \textnormal{shift}_c) / \textnormal{scale}\).
- Parameters:
shift – Shift parameters as double (one value per channel, or one single value for all channels). Default: [0.0]
scale – Scaling parameter as double (one value per channel, or one single value for all channels). Default: [1.0]
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.AdjustShiftScaleOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.AdjustShiftScaleOperation, shift: list[float] = [0.0], scale: list[float] = [1.0], *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.ApplyTopDownFlagOperation(*args, **kwargs)
Bases:
Operation
Flip the input image if it has a
topDown
flag set to false.Note
The topDown flag is not accessible from Python
- Parameters:
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
- Other parameters accepted by configure():
axes: [‘y’]
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.ApplyTopDownFlagOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.ApplyTopDownFlagOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.ApproximateToHigherResolutionOperation(*args, **kwargs)
Bases:
Operation
Replicate the input image of the operation from the original reference image (in
ReferenceImageDataComponent
) This operation is to be used mainly as post-processing, when a model produces a filtered image at a sub-resolution: it then tries to replicate the output from the original image so that no resolution is lost. It consists in estimating a multiplicative scalar field between the input and the downsampled original image, upsample it and then re-apply it on the original image.- Parameters:
epsilon – Used to avoid division by zero in case the original image has zero values. Default: 1.0
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.ApproximateToHigherResolutionOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.ApproximateToHigherResolutionOperation, epsilon: float = 1.0, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.ArgMaxOperation(*args, **kwargs)
Bases:
Operation
Create a label map with the indices corresponding of the input channel with the highest value. The output of this operation is zero indexed, i.e. no matter which channels where selected the output is always in range [0; n - 1] where n is the number of selected channels (+ 1 if background threshold selected).
- Parameters:
selected_channels – List of channels to be selected for the argmax. If empty, use all channels (default). Indices are zero indexed, e.g. [0, 1, 2, 3] selects the first 4 channels.
background_threshold – If set, the arg-max operation assumes the background is not explicitly encoded, and is only set when all activations are below background_threshold. The output then encodes 0 as the background. E.g. if the first 4 channels were selected, the possible output values would be [0, 1, 2, 3, 4] with 0 for the background and the rest for the selected channels.
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.ArgMaxOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.ArgMaxOperation, selected_channels: list[int] = [], background_threshold: Optional[float] = None, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.AxisFlipOperation(*args, **kwargs)
Bases:
Operation
Flip image content along specified set of axes.
- Parameters:
axes – List of strings from {‘x’,’y’,’z’} specifying the axes to flip. For 2D images, only ‘x’ and ‘y’ are valid.
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.AxisFlipOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.AxisFlipOperation, axes: list[str], *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.AxisRotationOperation(*args, **kwargs)
Bases:
Operation
Rotate image around image axis with axis-specific rotation angles that are signed multiples of 90 degrees.
- Parameters:
axes – List of strings from {‘x’,’y’,’z’} specifying the axes to rotate around. For 2D images, only [‘z’] is valid.
angles – List of integers (with same lengths as axis) specifying the rotation angles in degrees. Only +- 0/90/180/270 are valid.
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.AxisRotationOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.AxisRotationOperation, axes: list[str], angles: list[int], *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.BakeDeformationOperation(*args, **kwargs)
Bases:
Operation
Deform an image with its attached Deformation and store the result into the returned output image. This operation will return a clone of the input image if it does not have any deformation attached. The output image will not have an attached Deformation.
- Parameters:
adjust_size – whether the size of the output image would be automatically adjusted to fit the deformed content. Default: True
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.BakeDeformationOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.BakeDeformationOperation, adjust_size: bool = True, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.BakePhotometricInterpretationOperation(*args, **kwargs)
Bases:
Operation
Bake the Photometric Interpretation into the intensities of the image. If the image has a Photometric Interpretation of MONOCHROME1, the intensities will run be inverted using: \(\textnormal{output} = \textnormal{max} - (\textnormal{input} - \textnormal{min})\)
- Parameters:
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.BakePhotometricInterpretationOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.BakePhotometricInterpretationOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.BakeTransformationOperation(*args, **kwargs)
Bases:
Operation
Apply the rotation contained in the input image matrix.
- Parameters:
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.BakeTransformationOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.BakeTransformationOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.BlobsFromKeypointsOperation(*args, **kwargs)
Bases:
Operation
Transforms keypoints into an actual image (blob map with the same size of the image). Requires an input image called “data” (can be overwritten with the parameter
image_field_name
) and some keypoints called “keypoints” (can be overwritten with the parameterapply_to
).- Parameters:
blob_radius – Size of the generated blobs in mm. Default: 5.0
image_field_name – Field name of the reference image. Default: “data”
blobs_field_name – Field name of the output blob map. Default: “label”
label_map_mode – Generate ubyte label map instead of multi-channel gaussian blobs. Default: False
sharp_blobs – Specifies whether to sharpen the profiles of the blob function, making its support more compact. Default: False
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.BlobsFromKeypointsOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.BlobsFromKeypointsOperation, blob_radius: float = 5.0, image_field_name: str = ‘data’, blobs_field_name: str = ‘label’, label_map_mode: bool = False, sharp_blobs: bool = False, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.BoundingBoxElement(self: BoundingBoxElement, boundingbox_set: BoundingBoxSet)
Bases:
DataElement
Initialize a BoundingBoxElement
- Parameters:
boundingbox_set – In case the argument is a numpy array, the array shape is expected to be [N, C, B, 2, 3], where N is the batch size, C the number of different keypoint types (channel), B the number of instances of the same box type. Each Box is expected to have dimensions [2, 3]. If the argument is a nested list, the same concept applies also to the size of each level of nesting.
- property boxes
Access to the underlying BoundingBoxSet.
- class imfusion.machinelearning.BoundingBoxSet(*args, **kwargs)
Bases:
Data
Class for managing sets of bounding boxes
The class is meant to be used in parallel with SharedImageSet. For each frame in the set, and for each type of bounding box (i.e. car, airplane, lung, cat), there is a list of boxes that encompass an instance of that type in the reference image. In terms of tensor dimensions, this would be represented as [N, C, B], where N is the batch size, C is the number of channels (i.e. types of boxes), and B is the number of boxes for the same instance type. Each Box has a dimension of [2, 3], consisting of a pair of vec3 for describing center and extent. See the Box class for more information.
Note
The API for this class is experimental and may change soon.
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.BoundingBoxSet, boxes: list[list[list[imfusion.machinelearning._bindings.Box]]]) -> None
__init__(self: imfusion.machinelearning._bindings.BoundingBoxSet, boxes: list[list[list[tuple[numpy.ndarray[numpy.float64[3, 1]], numpy.ndarray[numpy.float64[3, 1]]]]]]) -> None
__init__(self: imfusion.machinelearning._bindings.BoundingBoxSet, boxes: list[list[list[tuple[list[float], list[float]]]]]) -> None
__init__(self: imfusion.machinelearning._bindings.BoundingBoxSet, array: numpy.ndarray[numpy.float64]) -> None
- static load(location: str) BoundingBoxSet | None
Load a BoundingBoxSet from an ImFusion file.
- Parameters:
location (str) – input path.
- save(self: BoundingBoxSet, location: str) None
Save a BoundingBoxSet as an ImFusion file.
- Parameters:
location (str) – output path.
- property data
- class imfusion.machinelearning.Box(*args, **kwargs)
Bases:
pybind11_object
Bounding Box class for ML tasks. Since bounding boxes are axis aligned by definition, a Box is represented by its center and its extent. This representation allows for easy rotation, augmentation etc.
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.Box, center: numpy.ndarray[numpy.float64[3, 1]], extent: numpy.ndarray[numpy.float64[3, 1]]) -> None
__init__(self: imfusion.machinelearning._bindings.Box, center_and_extent: tuple[numpy.ndarray[numpy.float64[3, 1]], numpy.ndarray[numpy.float64[3, 1]]]) -> None
- property center
- property extent
- class imfusion.machinelearning.CenterROISampler(*args, **kwargs)
Bases:
ImageROISampler
Sampler which samples one ROI from the input image and label map with a target size. The ROI is centered on the image center. The arrays will be padded if the target size is larger than the input image.
- Parameters:
roi_size – Target size of the ROIs to be extracted as [Width, Height, Slices]
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
- Other parameters accepted by configure():
label_padding_mode: EnumStringParam assigned to clamp in {clamp; mirror; zero}
padding_mode: EnumStringParam assigned to clamp in {clamp; mirror; zero}
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.CenterROISampler, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.CenterROISampler, roi_size: numpy.ndarray[numpy.int32[3, 1]], *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.CheckDataOperation(*args, **kwargs)
Bases:
Operation
Checks if all input data match a set of expected conditions. If parameters are zero or empty, they are not checked.
- Parameters:
num_dimensions – Expected number of dimensions in the input. Set to 0 to skip this check. Default: 0
num_images – Expected number of images in the input. Set to 0 to skip this check. Default: 0
num_channels – Expected number of channels in the input. Set to 0 to skip this check. Default: 0
data_type – Expected datatype of input. Must be one of: [“”, “float”, “uint8”, “int8”, “uint16”, “int16”, “uint32”, “int32”, “double”]. Empty string skips this check. Default: “”
dimensions – Expected spatial dimensions [width, height, depth] of input image. Set all dimensions to 0 to skip checking it. Default: [0,0,0]
spacing – Expected spacing [x, y, z] of input image in mm. Set all components to 0 to skip checking it. Default: [0,0,0]
label_match_input – Whether label dimensions and channel count must match the input image. Default: False
label_type – Expected datatype of labels. Must be one of: [“”, “float”, “uint8”, “int8”, “uint16”, “int16”, “uint32”, “int32”, “double”]. Empty string skips this check. Default: “”
label_values – List of required label values (excluding 0). No other values are allowed. When check_label_values_are_subset is false, all must be present. Empty list skips this check. Default: []
label_dimensions – Expected spatial dimensions [width, height, depth] of label image. Set all dimensions to 0 to skip checking it. Default: [0,0,0]
label_channels – Expected number of channels in the label image. Set to 0 to skip this check. Default: 0
check_rotation_matrix – Whether to verify the input image has no rotation matrix. Default: False
check_deformation – Whether to verify the input image has no deformation. Default: False
check_shift_scale – Whether to verify the input image has identity intensity transformation. Default: False
fail_on_error – Whether to raise an exception on validation failure (True) or just log an error (False). Default: True
save_path_on_error – Path where to save the failing input as an ImFusion file (.imf) when validation fails. Empty string disables saving. Default: “”
check_label_values_are_subset – Whether to allow label values not listed in label_values. When True, unlisted values are permitted. Default: False
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.CheckDataOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.CheckDataOperation, num_dimensions: int = 0, num_images: int = 0, num_channels: int = 0, data_type: str = ‘’, dimensions: numpy.ndarray[numpy.int32[3, 1]] = array([0, 0, 0], dtype=int32), spacing: numpy.ndarray[numpy.float64[3, 1]] = array([0., 0., 0.]), label_match_input: bool = False, label_type: str = ‘’, label_values: list[int] = [], label_dimensions: numpy.ndarray[numpy.int32[3, 1]] = array([0, 0, 0], dtype=int32), label_channels: int = 0, check_rotation_matrix: bool = False, check_deformation: bool = False, check_shift_scale: bool = False, fail_on_error: bool = True, save_path_on_error: str = ‘’, check_label_values_are_subset: bool = False, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.ClipOperation(*args, **kwargs)
Bases:
Operation
Clip the intensities to a minimum and maximum value: all intensities outside this range will be clipped to the range border.
- Parameters:
min – Minimum intensity of the output image. Default: 0.0
max – Maximum intensity of the output image. Default: 1.0
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.ClipOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.ClipOperation, min: float = 0.0, max: float = 1.0, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.ComputingDevice(*args, **kwargs)
Bases:
pybind11_object
Members:
FORCE_CPU
GPU_IF_GL_IMAGE
GPU_IF_OPENGL
FORCE_GPU
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.ComputingDevice, value: int) -> None
__init__(self: imfusion.machinelearning._bindings.ComputingDevice, arg0: str) -> None
- FORCE_CPU = <ComputingDevice.FORCE_CPU: 0>
- FORCE_GPU = <ComputingDevice.FORCE_GPU: 3>
- GPU_IF_GL_IMAGE = <ComputingDevice.GPU_IF_GL_IMAGE: 1>
- GPU_IF_OPENGL = <ComputingDevice.GPU_IF_OPENGL: 2>
- property name
- property value
- class imfusion.machinelearning.ConcatenateNeighboringFramesToChannelsOperation(*args, **kwargs)
Bases:
Operation
This function iterates over each frame, augmenting the channel dimension by appending or adding information from neighboring frames from both sides. For instance, with radius=1 concatenation, an image with dimensions (10, 1, 256, 256, 1) becomes an (10, 1, 256, 256, 3) image, meaning each frame will now include its predecessor (channel 0), itself (channel 1), and its successor (channel 2). For multi-channel inputs, only the first channel is used for concatenation; other channels are appended after these in the output. With reduction_mode, central and augmented frames can be reduced to a single frame to preserve the original number of channels.
- Parameters:
radius – Defines the number of neighboring frames added to each side within the channel dimension. Default: 0
reduction_mode – Determines if and how to reduce neighboring frames. Options: “none” (default, concatenates), “average”, “maximum”.
same_padding – Use frame replication (not zero-padding) at sequence edges. Default: True
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.ConcatenateNeighboringFramesToChannelsOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.ConcatenateNeighboringFramesToChannelsOperation, radius: int = 0, reduction_mode: str = ‘none’, same_padding: bool = True, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.ConvertSlicesToVolumeOperation(*args, **kwargs)
Bases:
Operation
Stacks a set of 2D images extracted along a specified axis into an actual 3D volume.
- Parameters:
axis – Axis along which to extract slices (must be either ‘x’, ‘y’ or ‘z’)
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.ConvertSlicesToVolumeOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.ConvertSlicesToVolumeOperation, axis: str = ‘z’, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.ConvertToGrayOperation(*args, **kwargs)
Bases:
Operation
Convert the input image to a single channel image by averaging all channels.
- Parameters:
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.ConvertToGrayOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.ConvertToGrayOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.ConvertVolumeToSlicesOperation(*args, **kwargs)
Bases:
Operation
Unstacks a 3D volume to a set of 2D images extracted along one of the axes.
- Parameters:
axis – Axis along which to extract slices (must be either ‘x’, ‘y’ or ‘z’)
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.ConvertVolumeToSlicesOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.ConvertVolumeToSlicesOperation, axis: str = ‘z’, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.ConvolutionalCRFOperation(*args, **kwargs)
Bases:
Operation
Adapt segmentation map or raw output of model to image content.
- Parameters:
adaptiveness – Indicates how much the segmentation should be adapted to the image content. Range [0, 1]. Default: 0.5
smooth_weight – Weight of the smoothness kernel. Higher values create a greater penalty for nearby pixels having different labels. Default: 0.1
radius – Radius of the message passing window in pixels. Default: 5
downsampling – Amount of downsampling used in message passing, makes the effective radius of the message passing window larger. Default: 2
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
- Other parameters accepted by configure():
label_compatibilites:
convergence_threshold: 0.00100000004749745
max_num_iter: 50
smoothness_sigma: 1.0
appearance_sigma: 0.25
positive_label_score: 1.0
negative_label_score: -1.0
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.ConvolutionalCRFOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.ConvolutionalCRFOperation, adaptiveness: float = 0.5, smooth_weight: float = 0.1, radius: int = 5, downsampling: int = 2, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.CopyOperation(*args, **kwargs)
Bases:
Operation
Copies a set of fields of a data item.
- Parameters:
source – list of the elements to be copied
target – list of names of the new elements (must match the size of source)
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.CopyOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.CopyOperation, source: list[str], target: list[str], *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.CropAroundLabelMapOperation(*args, **kwargs)
Bases:
Operation
Crops the input image and label to the bounds of the specified label value, and sets the label value to 1 and all other values to zero in the resulting label.
- Parameters:
label_values – Label values to select. Default: [1]
margin – Margin, in pixels. Default: 1
reorder – Whether label values in result should be mapped to 1,2,3… based on input in label_values. Default: False
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.CropAroundLabelMapOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.CropAroundLabelMapOperation, label_values: list[int] = [1], margin: int = 1, reorder: bool = False, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.CropOperation(*args, **kwargs)
Bases:
Operation
Crop input images and label maps with a given size and offset.
- Parameters:
size – List of integers representing the target dimensions of the image to be cropped. If -1 is specified, the whole dimension will be kept, starting from the corresponding offset.
offset – List of integers representing the position of the lower corner of the cropped image
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.CropOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.CropOperation, size: numpy.ndarray[numpy.int32[3, 1]], offset: numpy.ndarray[numpy.int32[3, 1]], *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.CutOutOperation(*args, **kwargs)
Bases:
Operation
Cut out input images and label maps with a given size, offset and fill values.
- Parameters:
size – List of 3-dim vectors representing the target dimensions of the image to be cut out. Default: [1, 1, 1]
offset – List of 3-dim vectors representing the position of the lower corner of the cut out area. Default: [0, 0, 0]
fill_value – List of intensity value (floats) for filling out cutout region. Default: [0.0]
size_units – Units of the size parameter. Default:
MM
offset_units – Units of the offset parameter. Default:
VOXEL
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.CutOutOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.CutOutOperation, size: list[numpy.ndarray[numpy.float64[3, 1]]] = [array([1., 1., 1.])], offset: list[numpy.ndarray[numpy.float64[3, 1]]] = [array([0., 0., 0.])], fill_value: list[float] = [0.0], size_units: imfusion.machinelearning._bindings.ParamUnit = MM, offset_units: imfusion.machinelearning._bindings.ParamUnit = VOXEL, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.DataElement
Bases:
pybind11_object
- clone(self: DataElement, with_data: bool = True) DataElement
Create a copy of the element.
- numpy(copy=False)
- Parameters:
self (DataElement) –
- split(self: DataElement) list[DataElement]
Split an element into several ones along the batch dimension.
- static stack(elements: list[DataElement]) DataElement
Stack several elements along the batch dimension.
- tag_as_target(self: DataElement) None
Mark this element as being a target.
- torch(device: device = None, dtype: dtype = None, same_as: Tensor = None) Tensor
Convert SharedImageSet or a SharedImage to a torch.Tensor.
- Parameters:
self (DataElement | SharedImageSet | SharedImage) – Instance of SharedImageSet or SharedImage (this function bound as a method to SharedImageSet and SharedImage)
device (device) – Target device for the new torch.Tensor
dtype (dtype) – Type of the new torch.Tensor
same_as (Tensor) – Template tensor whose device and dtype configuration should be matched.
device
anddtype
are still applied afterwards.
- Returns:
New torch.Tensor
- Return type:
- untag_as_target(self: DataElement) None
Remove target status from this element.
- property batch_size
Returns the batch size of the element.
- property components
Returns the list of DataComponents for this element.
- property content
Access to the underlying Data.
- property dimension
Returns the dimensionality of the underlying data
- property is_target
Returns true if this element is marked as a target.
- property ndim
Returns the dimensionality of the underlying data
- property type
Returns the type of the underlying data
- class imfusion.machinelearning.DataItem(self: DataItem, elements: dict[str, DataElement] = {})
Bases:
Data
Class managing a dictionary of DataElements. This class is used as the container for applying Operations to a collection of heterogeneous data in a consistent way. This class implements the concept of batch size for the contained elements. As such, a DataItem can be split or stacked along the batch axis like the contained DataElements, but because of that it enforces that all DataElement stored have consistent batch size.
Construct a DataItem with existing Elements if provided.
- Parameters:
elements (Dict[str, imfusion.DataElement]) – elements to be inserted into the DataItem, default: {}
- __getitem__(self: DataItem, arg0: str) DataElement
- __iter__(self: DataItem) Iterator[tuple[str, DataElement]]
- __setitem__(*args, **kwargs)
Overloaded function.
__setitem__(self: imfusion.machinelearning._bindings.DataItem, field: str, element: imfusion.machinelearning._bindings.DataElement) -> None
Set a DataElement to the DataItem.
- Parameters:
field (str) – field name
element (DataElement) – element to be inserted into the DataItem, if the field exists it’s overwritten.
__setitem__(self: imfusion.machinelearning._bindings.DataItem, field: str, element: imfusion.machinelearning._bindings.ImageElement) -> None
Set a ImageElement to the DataItem.
- Parameters:
field (str) – field name
element (ImageElement) – element to be inserted into the DataItem, if the field exists it’s overwritten.
__setitem__(self: imfusion.machinelearning._bindings.DataItem, field: str, element: imfusion.machinelearning._bindings.KeypointsElement) -> None
Set a KeypointsElement to the DataItem.
- Parameters:
field (str) – field name
element (KeypointsElement) – element to be inserted into the DataItem, if the field exists it’s overwritten.
__setitem__(self: imfusion.machinelearning._bindings.DataItem, field: str, element: imfusion.machinelearning._bindings.BoundingBoxElement) -> None
Set a BoundingBoxElement to the DataItem.
- Parameters:
field (str) – field name
element (BoundingBoxElement) – element to be inserted into the DataItem, if the field exists it’s overwritten.
__setitem__(self: imfusion.machinelearning._bindings.DataItem, field: str, element: imfusion.machinelearning._bindings.VectorElement) -> None
Set a VectorElement to the DataItem.
- Parameters:
field (str) – field name
element (VectorElement) – element to be inserted into the DataItem, if the field exists it’s overwritten.
__setitem__(self: imfusion.machinelearning._bindings.DataItem, field: str, element: imfusion.machinelearning._bindings.TensorElement) -> None
Set a TensorElement to the DataItem.
- Parameters:
field (str) – field name
element (TensorElement) – element to be inserted into the DataItem, if the field exists it’s overwritten.
__setitem__(self: imfusion.machinelearning._bindings.DataItem, field: str, shared_image_set: imfusion._bindings.SharedImageSet) -> None
Set a SharedImageSet to the DataItem.
- Parameters:
field (str) – field name
element (SharedImageSet) – element to be inserted into the DataItem, if the field exists it’s overwritten.
__setitem__(self: imfusion.machinelearning._bindings.DataItem, field: str, keypoint_set: imfusion.machinelearning._bindings.KeypointSet) -> None
Set a KeypointSet to the DataItem.
- Parameters:
field (str) – field name
element (imfusion.KeypointSet) – element to be inserted into the DataItem, if the field exists it’s overwritten.
__setitem__(self: imfusion.machinelearning._bindings.DataItem, field: str, bboxes: imfusion.machinelearning._bindings.BoundingBoxSet) -> None
Set a BoundingBoxSet to the DataItem.
- Parameters:
field (str) – field name
element (BoundingBoxSet) – element to be inserted into the DataItem, if the field exists it’s overwritten.
__setitem__(self: imfusion.machinelearning._bindings.DataItem, field: str, tensor: imfusion.machinelearning._bindings.Tensor, batch_size: int = 1) -> None
Set a Tensor to the DataItem.
- contains(self: DataItem, arg0: str) bool
Checks if the data item contains a field with the given name.
- get(*args, **kwargs)
Overloaded function.
get(self: imfusion.machinelearning._bindings.DataItem, field: str) -> imfusion.machinelearning._bindings.DataElement
Returns a reference to an element (raises a KeyError if field is not in item)
- Parameters:
field (str) – Name of the field to retrieve.
get(self: imfusion.machinelearning._bindings.DataItem, field: str, default: imfusion.machinelearning._bindings.DataElement) -> imfusion.machinelearning._bindings.DataElement
Returns a reference to an element (or the default value if field is not in item)
- Parameters:
field (str) – Name of the field to retrieve.
default (DataElement) – default value to return if field is not in DataItem.
- get_all(self: DataItem, arg0: ElementType) set[DataElement]
Returns a list of all elements of the specified type.
- items(self: DataItem) Iterator[tuple[str, DataElement]]
- static load(location: str) DataItem
Load data item from ImFusion file.
- Parameters:
location (str) – input path.
- static merge(items: list[DataItem]) DataItem
Merge several data items by setting all their fields to the output item
- Parameters:
items (List[DataItem]) – List of input items to merge.
Note
Raises an exception is the same field is contained in more than one item.
- pop(self: DataItem, field: str) DataElement
Remove the DataElement associated to the given field and returns it.
- Parameters:
field (str) – Name of the field to remove.
- save(self: DataItem, location: str) None
Save data item as ImFusion file.
- Parameters:
location (str) – output path.
- set(*args, **kwargs)
Overloaded function.
set(self: imfusion.machinelearning._bindings.DataItem, field: str, element: imfusion.machinelearning._bindings.DataElement) -> None
Set a DataElement to the DataItem.
- Parameters:
field (str) – field name
element (DataElement) – element to be inserted into the DataItem, if the field exists it’s overwritten.
set(self: imfusion.machinelearning._bindings.DataItem, field: str, element: imfusion.machinelearning._bindings.ImageElement) -> None
Set a ImageElement to the DataItem.
- Parameters:
field (str) – field name
element (ImageElement) – element to be inserted into the DataItem, if the field exists it’s overwritten.
set(self: imfusion.machinelearning._bindings.DataItem, field: str, element: imfusion.machinelearning._bindings.KeypointsElement) -> None
Set a KeypointsElement to the DataItem.
- Parameters:
field (str) – field name
element (KeypointsElement) – element to be inserted into the DataItem, if the field exists it’s overwritten.
set(self: imfusion.machinelearning._bindings.DataItem, field: str, element: imfusion.machinelearning._bindings.BoundingBoxElement) -> None
Set a BoundingBoxElement to the DataItem.
- Parameters:
field (str) – field name
element (BoundingBoxElement) – element to be inserted into the DataItem, if the field exists it’s overwritten.
set(self: imfusion.machinelearning._bindings.DataItem, field: str, element: imfusion.machinelearning._bindings.VectorElement) -> None
Set a VectorElement to the DataItem.
- Parameters:
field (str) – field name
element (VectorElement) – element to be inserted into the DataItem, if the field exists it’s overwritten.
set(self: imfusion.machinelearning._bindings.DataItem, field: str, element: imfusion.machinelearning._bindings.TensorElement) -> None
Set a TensorElement to the DataItem.
- Parameters:
field (str) – field name
element (TensorElement) – element to be inserted into the DataItem, if the field exists it’s overwritten.
set(self: imfusion.machinelearning._bindings.DataItem, field: str, shared_image_set: imfusion._bindings.SharedImageSet) -> None
Set a SharedImageSet to the DataItem.
- Parameters:
field (str) – field name
element (SharedImageSet) – element to be inserted into the DataItem, if the field exists it’s overwritten.
set(self: imfusion.machinelearning._bindings.DataItem, field: str, keypoint_set: imfusion.machinelearning._bindings.KeypointSet) -> None
Set a KeypointSet to the DataItem.
- Parameters:
field (str) – field name
element (KeypointSet) – element to be inserted into the DataItem, if the field exists it’s overwritten.
set(self: imfusion.machinelearning._bindings.DataItem, field: str, bounding_box_set: imfusion.machinelearning._bindings.BoundingBoxSet) -> None
Set a BoundingBoxSet to the DataItem.
- Parameters:
field (str) – field name
element (BoundingBoxSet) – element to be inserted into the DataItem, if the field exists it’s overwritten.
set(self: imfusion.machinelearning._bindings.DataItem, field: str, tensor: imfusion.machinelearning._bindings.Tensor, batch_size: int = 1) -> None
Set a Tensor to the DataItem.
- static split(item: DataItem) list[DataItem]
Split a data item along the batch channels into items, each with batch size 1
- Parameters:
item (DataItem) – Item to split.
- static stack(items: list[DataItem]) DataItem
Stack several data items along the batch dimension.
- Parameters:
items (List[DataItem]) – List of input items to stack.
- update(self: DataItem, other: DataItem, clone: bool = True) None
Update the contents of self with elements from other
- Parameters:
Note
Raises an exception if the batch_size of other does not match self.
- values(self: DataItem) Iterator[DataElement]
- property batch_size
Returns the batch size of the fields, zero if no elements are present, or None if there are inconsistencies within them.
- property dimension
Returns the dimensionality of the elements, or zero if no elements are present or if there are inconsistencies within them.
- property fields
Returns the set of fields contained in the data item.
- property ndim
Returns the dimensionality of the elements, or zero if no elements are present or if there are inconsistencies within them.
- class imfusion.machinelearning.DataLoaderSpecs(self: DataLoaderSpecs, arg0: str, arg1: Properties, arg2: Phase, arg3: list[str], arg4: str)
Bases:
pybind11_object
- property configuration
- property inputs
- property name
- property output
- property phase
- class imfusion.machinelearning.Dataset(*args, **kwargs)
Bases:
pybind11_object
Class for creating an iterable dataset by chaining data loading and transforming operations executed in a lazy fashion. The Dataset implements an iterable interface, which allows to use
iter()
andnext()
built-ins as well as range based loops.Overloaded function.
__init__(self: imfusion.machinelearning._bindings.Dataset, data_lists: list[tuple[dict[int, str], list[str]]], shuffle: bool = False, verbose: bool = False) -> None
Constructs a dataset from lists of filenames.
- Parameters:
__init__(self: imfusion.machinelearning._bindings.Dataset, read_from: str, reader_properties: imfusion._bindings.Properties, verbose: bool = False) -> None
Constructs a dataset by specifying a reader type as a string.
- Parameters:
read_from (string) – specifies the type of reader that is created implicitly. Options: “filesystem”.
reader_properties (Properties) – properties used to configure the reader.
verbose (bool) – print debug information when running the data loader. Default: false
__init__(self: imfusion.machinelearning._bindings.Dataset, verbose: bool = False) -> None
Constructs an empty dataset.
- Parameters:
verbose (bool) – print debug information when running the data loader. Default: false
- static available_filter_functions() list[str]
Returns filter function keys to be used in Dataset.filter decorator function
- static available_map_functions() list[str]
Returns map function keys to be used in Dataset.map decorator function
- batch(self: Dataset, batch_size: int = 1, pad: bool = False, overlap: int = 0) Dataset
Batches the next
batch_size
items in a single one before returning it.
- build_pipeline(self: imfusion.machinelearning._bindings.Dataset, property_list: list[imfusion.machinelearning._bindings.DataLoaderSpecs], config_phase: imfusion.machinelearning._bindings.Phase = <Phase.ALWAYS: 7>) None
Configures the Dataset decorators to be used based on a list of Properties.
- cache(self: Dataset, make_exclusive_cpu: bool = True, lazy: bool = True, compression_level: int = 0, shuffle: bool = False) Dataset
Deprecated - please use ‘memory_cache’ now.
- disk_cache(self: Dataset, location: str = '', lazy: bool = True, reload_from_disk: bool = True, compression: bool = False, shuffle: bool = False) Dataset
Caches the dataset already loaded in a persistent manner (on a disk location) Raises a DataLoaderError if the dataset is not countable.
- Parameters:
location (string) – path to the folder where all the data will be cached.
lazy (bool) – if false, the cache is filled upon construction (otherwise as items are requested).
reload_from_disk (bool) – try to reload the cache from a previous session (reload is the deprecated name of this parameter).
compression (bool) – use ZStandard compression.
shuffle (bool) – re-shuffle the cache order every epoch.
- filter(*args, **kwargs)
Overloaded function.
filter(self: imfusion.machinelearning._bindings.Dataset, func: Callable[[imfusion.machinelearning._bindings.DataItem], bool]) -> imfusion.machinelearning._bindings.Dataset
Filters the dataset according to a user defined function. Note: Filtering makes the dataset uncountable, since the func output is conditional.
- Parameters:
func (def func(dict) -> bool) – filtering criterion to be applied to each input item. The input must be of the form dict[str, SharedImageSet]
filter(self: imfusion.machinelearning._bindings.Dataset, func_name: str) -> imfusion.machinelearning._bindings.Dataset
Filters the dataset according to a user defined function. Note: Filtering makes the dataset uncountable, since the func output is conditional.
- Parameters:
func_name (str) – name of a registered filter function specifying a criterion to be applied to each input item. The input must be of the form dict[str, SharedImageSet]
- map(*args, **kwargs)
Overloaded function.
map(self: imfusion.machinelearning._bindings.Dataset, func: Callable[[imfusion.machinelearning._bindings.DataItem], None], num_parallel_calls: int = 1) -> imfusion.machinelearning._bindings.Dataset
Applies a mapping to each item of the dataset. Optionally specify the number
num_parallel_calls
of asynchronous threads which are used for the mapping.- Parameters:
map(self: imfusion.machinelearning._bindings.Dataset, func_name: str, num_parallel_calls: int = 1) -> imfusion.machinelearning._bindings.Dataset
Applies a mapping to each item of the dataset. Optionally specify the number
num_parallel_calls
of asynchronous threads which are used for the mapping.
- memory_cache(self: Dataset, make_exclusive_cpu: bool = True, lazy: bool = True, compression_level: int = 0, shuffle: bool = False, num_threads: int = 1) Dataset
Caches the dataset already loaded. Raises a DataLoaderError if the dataset is not countable. Raises a MemoryError if the system runs out of memory.
- Parameters:
make_exclusive_cpu (bool) – keep the data exclusively on CPU.
lazy (bool) – if false, the cache is filled upon construction (otherwise as items are requested).
compression_level (int) – controls compression, valid values are between 0 and 20. Higher means more compression, but slower. 0 disables compression.
shuffle (bool) – re-shuffle the cache order every epoch.
num_threads (int) – number of threads to use for copying from the cache
- prefetch(self: Dataset, prefetch_size: int, sync_to_gl: bool = True) Dataset
Prefetches items from the underlying loader in a background thread.
- preprocess(*args, **kwargs)
Overloaded function.
preprocess(self: imfusion.machinelearning._bindings.Dataset, preprocessing_pipeline: list[tuple[str, imfusion._bindings.Properties, imfusion.machinelearning._bindings.Phase]], exec_phase: imfusion.machinelearning._bindings.Phase = <Phase.ALWAYS: 7>, num_parallel_calls: int = 1) -> imfusion.machinelearning._bindings.Dataset
Adds a generic preprocessing step to the data pipeline. The processing is performed by the underlying sequence of
Operation
.- Parameters:
preprocessing_pipeline – List of specifications to construct the underlying
OperationsSequence
. Each specification must be a tuple consisting of the name of the operation, itsPhase
, andProperties
for configuring it.exec_phase –
Execution phase for the entire preprocessing pipeline. The execution will run only those operations whose phase (specified in the specs) corresponds to the current exec_phase, with the following exceptions:
Operations marked with phase == Phase.Always are always run regardless of the exec_phase.
If exec_phase == Phase.Always, all operations in the preprocessing pipeline are run regardless of their individual phase.
num_parallel_calls – specifies the number
num_parallel_calls
of asynchronous threads which are used for the preprocessing. Defaults to 1.
preprocess(self: imfusion.machinelearning._bindings.Dataset, operations: list[imfusion.machinelearning._bindings.Operation], num_parallel_calls: int = 1) -> imfusion.machinelearning._bindings.Dataset
Adds a generic preprocessing step to the data pipeline. The processing is performed by the underlying sequence of
Operation
.- Parameters:
operations – List of operations that will do the actual processing.
num_parallel_calls – specifies the number
num_parallel_calls
of asynchronous threads which are used for the preprocessing. Defaults to 1.
- read(self: Dataset, reader_type: str, reader_properties: Properties, verbose: bool = False) Dataset
Constructs a dataset by specifying a reader type as a string.
- Parameters:
reader_type – specifies the type of reader that is created implicitly. Options: “filesystem” (MemoryReader needs to be fixed to work with properties)
reader_properties – properties used to configure the reader.
verbose – print debug information when running the data loader. Default: false
- reinit(self: Dataset) None
Reinit the dataset, clearing state surviving reset() (i.e. data caches).
- repeat(self: Dataset, num_epoch_repetitions: int, num_item_repetitions: int = 1) Dataset
Repeats the dataset
num_epoch_repetitions
times and each individual itemnum_item_repetitions
times.
- sample(*args, **kwargs)
Overloaded function.
sample(self: imfusion.machinelearning._bindings.Dataset, sampling_pipeline: list[tuple[str, imfusion._bindings.Properties]], *, num_parallel_calls: int = 1, sampler_selection_seed: int = 1) -> imfusion.machinelearning._bindings.Dataset
Adds a ROI sampling step to the data pipeline. During this step the loaded image is reduced to a region of interest (ROI). The strategy for sampling this regions location is determined by the
ImageROISampler
s, which is randomly chosen from the underlying sampler set each time this step executes.- Parameters:
sampling_set_config – List of tuples of sampler name and corresponding
Properties
for configuring it.num_parallel_calls – Number of asynchronous threads which are used for the preprocessing. Defaults to 1.
sampler_selection_seed – Seed for the random generator of the samplers selection
sample(self: imfusion.machinelearning._bindings.Dataset, samplers: list[imfusion.machinelearning._bindings.ImageROISampler], weights: Optional[list[float]] = None, *, sampler_selection_seed: int = 1, num_parallel_calls: int = 1) -> imfusion.machinelearning._bindings.Dataset
Adds a ROI sampling step to the data pipeline. During this step the loaded image is reduced to a region of interest (ROI). The strategy for sampling this regions location is determined by the
ImageROISampler
s, which is randomly chosen from the underlying sampler set each time this step executes.- Parameters:
samplers – List of sampler to choose from when sampling.
weights – Probability weights for the samplers specifying the relative probability of choosing each sampler.
num_parallel_calls – Number of asynchronous threads which are used for the preprocessing. Defaults to 1.
sampler_selection_seed (unsigned int) – Seed for the random generator of the samplers selection
sample(self: imfusion.machinelearning._bindings.Dataset, sampler: imfusion.machinelearning._bindings.ImageROISampler, *, num_parallel_calls: int = 1) -> imfusion.machinelearning._bindings.Dataset
Adds a ROI sampling step to the data pipeline. During this step the loaded image is reduced to a region of interest (ROI). The strategy for sampling this regions location is determined by the
ImageROISampler
s, which is randomly chosen from the underlying sampler set each time this step executes.- Parameters:
sampler – Sampler to choose from when sampling.
num_parallel_calls – Number of asynchronous threads which are used for the preprocessing. Defaults to 1.
- shuffle(self: Dataset, shuffle_buffer: int = -1, seed: int = -1) Dataset
Shuffles the next
how_many
items of the dataset. Defaults to -1, i.e. shuffles the entire dataset. Ifhow_many
is not specified and the dataset is not countable, it throws a DataLoaderError.
- split(self: Dataset, num_items: int = -1) Dataset
Splits the content of the SharedImagesSets into SIS containing a single image.
- Parameters:
num_items – Keep only the first
num_items
frames. Default is -1, which keeps all frames.
Note
Calling this method will make the dataset uncountable
- property size
Returns the length of the dataset or None if the set is uncountable.
- property verbose
Flag indicating whether extra information is logged when fetching data items.
- class imfusion.machinelearning.DefaultROISampler(*args, **kwargs)
Bases:
ImageROISampler
Sampler which simply returns the image and the label map, after padding of a specified dimension divisor: each spatial dimension of the output arrays will be divisible by
dimension_divisor
.- Parameters:
dimension_divisor – Divisor of dimensions of the output images
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
- Other parameters accepted by configure():
label_padding_mode: EnumStringParam assigned to clamp in {clamp; mirror; zero}
padding_mode: EnumStringParam assigned to clamp in {clamp; mirror; zero}
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.DefaultROISampler, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.DefaultROISampler, dimension_divisor: int, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.DeformationOperation(*args, **kwargs)
Bases:
Operation
Apply a deformation to the image using a specified control point grid and specified displacements.
- Parameters:
num_subdivisions – list specifying the number of subdivisions for each dimension (the number of control points is subdivisions+1). Default: [1, 1, 1]
displacements – list of 3-dim vectors specifying the displacement (mm) for each control point. Should have length equal to the number of control points. Default: []
padding_mode – defines which type of padding is used. Default:
ZERO
adjust_size – configures whether the resulting image should adjust its size to encompass the deformation. Default: False
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.DeformationOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.DeformationOperation, num_subdivisions: numpy.ndarray[numpy.int32[3, 1]] = array([1, 1, 1], dtype=int32), displacements: list[numpy.ndarray[numpy.float32[3, 1]]] = [], padding_mode: imfusion._bindings.PaddingMode = <PaddingMode.ZERO: 0>, adjust_size: bool = False, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.DiceMetric(self: DiceMetric, ignore_background: bool = True)
Bases:
Metric
- compute_dice(self: DiceMetric, arg0: SharedImageSet, arg1: SharedImageSet) list[dict[int, float]]
- class imfusion.machinelearning.ElementType(self: ElementType, value: int)
Bases:
pybind11_object
Members:
IMAGE
KEYPOINT
BOUNDING_BOX
VECTOR
TENSOR
- BOUNDING_BOX = <ElementType.BOUNDING_BOX: 1>
- IMAGE = <ElementType.IMAGE: 0>
- KEYPOINT = <ElementType.KEYPOINT: 2>
- TENSOR = <ElementType.TENSOR: 4>
- VECTOR = <ElementType.VECTOR: 3>
- property name
- property value
- class imfusion.machinelearning.Engine(self: Engine, name: str)
Bases:
pybind11_object
- available_providers(self: Engine) list[ExecutionProvider]
Returns the execution providers available to the Engine
- check_input_fields(self: Engine, input: DataItem) None
Checks that input fields specified in the model yaml config are present in the input item.
- check_output_fields(self: Engine, input: DataItem) None
Checks the output fields specified in the model yaml config are present in the item returned by predict.
- configure(self: Engine, properties: Properties) None
Configures the Engine.
- connect_signals(self: Engine) None
Connects signals like on_model_file_changed, on_force_cpu_changed.
- init(self: Engine, properties: Properties) None
Initializes the Engine.
- provider(self: Engine) ExecutionProvider | None
Returns the execution provider currently used by the Engine.
- property force_cpu
If set, forces the model to run on CPU.
- property input_fields
Names of the model input heads.
- property model_file
Path to the yaml model configuration.
- property name
- property output_fields
Names of the model output heads.
- property output_fields_to_ignore
Model output heads to discard.
- property version
Version of the model configuration.
- class imfusion.machinelearning.EngineConfiguration
Bases:
pybind11_object
- configure(self: EngineConfiguration, properties: Properties) None
Configures the EngineConfiguration.
- to_properties(self: EngineConfiguration) Properties
Converts the EngineConfiguration to a Properties object.
- default_input_name = 'Input'
- default_output_name = 'Prediction'
- property engine_specific_parameters
Parameter that are specific to the type of Engine.
- property force_cpu
If set, forces the model to run on CPU.
- property input_fields
Names of the model input heads.
- property model_file
Path to the yaml model configuration.
- property output_fields
Names of the model output heads.
- property output_fields_to_ignore
Model output heads to discard.
- property type
Type of Engine, i.e. torch, onnx, openvino…
- property version
Version of the model configuration.
- class imfusion.machinelearning.EnsureExplicitMaskOperation(*args, **kwargs)
Bases:
Operation
Converts the existing mask of all input images into explicit masks. If an image does not have a mask, no mask will be created. Warning: This operation might be computationally extensive since it processes every frame of the SharedImageSet independently.
- Parameters:
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.EnsureExplicitMaskOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.EnsureExplicitMaskOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.EnsureOneToOneMatrixMappingOperation(*args, **kwargs)
Bases:
Operation
Ensures that it is possible to get/set the matrix of each frame of the input image set independently. This operation is targeted at TrackedSharedImageSets, which might define their matrices via a tracking sequence with timestamps (there is then no one-to-one correspondence between matrices and images, but matrices are looked-up and interpolated via their timestamps). In such cases, the operation creates a new tracking sequence with as many samples as images and turns off the timestamp usage.
- Parameters:
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.EnsureOneToOneMatrixMappingOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.EnsureOneToOneMatrixMappingOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.ExecutionProvider(self: ExecutionProvider, value: int)
Bases:
pybind11_object
Members:
CPU
CUDA
CUSTOM
DIRECTML
MPS
OPENVINO
- CPU = <ExecutionProvider.CPU: 0>
- CUDA = <ExecutionProvider.CUDA: 2>
- CUSTOM = <ExecutionProvider.CUSTOM: 1>
- DIRECTML = <ExecutionProvider.DIRECTML: 3>
- MPS = <ExecutionProvider.MPS: 5>
- OPENVINO = <ExecutionProvider.OPENVINO: 4>
- property name
- property value
- class imfusion.machinelearning.ExtractRandomSubsetOperation(*args, **kwargs)
Bases:
Operation
Extracts a random subset from a SharedImageSet.
- Parameters:
subset_size – Size of the extracted subset of images. Default: 1
keep_order – If true the extracted subset will have the same ordering as the input. Default: False
probability – Probability of applying this Operation. Default: 1.0
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.ExtractRandomSubsetOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.ExtractRandomSubsetOperation, subset_size: int = 1, keep_order: bool = False, probability: float = 1.0, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.ExtractSubsetOperation(*args, **kwargs)
Bases:
Operation
Extracts a subset from a SharedImageSet.
- Parameters:
subset – Indices of the selected images.
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.ExtractSubsetOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.ExtractSubsetOperation, subset: list[int], *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.ForegroundGuidedLabelUpsamplingOperation(*args, **kwargs)
Bases:
Operation
Generates a high-resolution label map by upsampling a multi-class softmax prediction guided by a high-resolution binary segmentation. This operation combines a high-resolution binary segmentation (e.g., from a sigmoid prediction) with a lower-resolution multi-class one-hot encoded segmentation (e.g., from a softmax prediction) to produce a refined high-resolution multi-class label map. The approach is inspired by pan-sharpening techniques used in remote sensing (https://arxiv.org/abs/1504.04531). The multi-class one hot image should contain the background class as the first channel.
- Parameters:
apply_to – List of field names for input images, expected order: [“highResSigmoid”, “lowResSoftmax”]
output_field – Name for the output field. If not specified, overwrites first input field
remove_fields – Remove input fields after processing. Default: True
apply_sigmoid – Use sigmoid intensities to guide foreground/background decision. If False, outputs most likely non-background class (if any, otherwise background) from softmax. Default: True
guidance_weight – Weight of sigmoid vs softmax for foreground decision [0-1]. Lower values can reduce false positives. Ignored if apply_sigmoid=False. Default: 1.0
boundary_refinement_max_iter – Maximum iterations for boundary refinement at output resolution. Higher values may be needed for larger resolution differences. Ideal values depend on the data and
boundary_refinement_smooth
. Default: 3boundary_refinement_smooth – Smoothing factor for boundary refinement. Larger values remove smaller label patches. Default: 1.0
boundary_refinement_add_only – Optional list of label values to restrict the refinement to additions only. Default: []
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.ForegroundGuidedLabelUpsamplingOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.ForegroundGuidedLabelUpsamplingOperation, apply_to: list[str] = [‘highResSigmoid’, ‘lowResSoftmax’], output_field: Optional[str] = None, remove_fields: bool = True, apply_sigmoid: bool = True, guidance_weight: float = 1.0, boundary_refinement_max_iter: int = 3, boundary_refinement_smooth: float = 1.0, boundary_refinement_add_only: list[int] = [], *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.GammaCorrectionOperation(*args, **kwargs)
Bases:
Operation
Apply a gamma correction which changes the overall contrast (see https://en.wikipedia.org/wiki/Gamma_correction)
- Parameters:
gamma – Power applied to the normalized intensities. Default: 1.0
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.GammaCorrectionOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.GammaCorrectionOperation, gamma: float = 1.0, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.HighPassOperation(*args, **kwargs)
Bases:
Operation
Smooths the input image with a Gaussian kernel with
half_kernel_size
, then subtracts the smoothed image from the input, resulting in a reduction of low-frequency components.- Parameters:
half_kernel_size – half kernel size in pixels. Corresponding standard deviation is half_kernel_size / 3.
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.HighPassOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.HighPassOperation, half_kernel_size: int, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.ImageElement(self: ImageElement, image: SharedImageSet)
Bases:
SISBasedElement
Initialize an ImageElement from a SharedImageSet.
- Parameters:
image (SharedImageSet) – image to be converted to a ImageElement
- from_torch()
- class imfusion.machinelearning.ImageMattingOperation(*args, **kwargs)
Bases:
Operation
Refine edges of label-map based on the intensities of the input image. This can make coarse predictions smoother or may correct wrong predictions on the boundaries. It applies the method from the paper “Guided Image Filtering” by Kaiming He et al.
- Parameters:
img_size – target image dimension. No downsampling if 0.
kernel_size – guided filter kernel size.
epsilon – guided filter epsilon.
num_iters – guided filter number of iterations.
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.ImageMattingOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.ImageMattingOperation, img_size: int, kernel_size: int, epsilon: float, num_iters: int, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.ImageROISampler
Bases:
Operation
Base class for ROI samplers
- compute_roi(self: ImageROISampler, image: SharedImageSet) RegionOfInterest | None
Compute ROI on the given image.
- extract_roi(self: ImageROISampler, image: SharedImageSet, roi: RegionOfInterest | None) SharedImageSet
Extract ROIs from an image.
- property label_padding_mode
The label padding mode property.
- property padding_mode
The image padding mode property.
- property requires_label
Bool indicating whether ROI must be computed on the label map.
- class imfusion.machinelearning.ImagewiseClassificationMetrics(self: ImagewiseClassificationMetrics, num_classes: int = 2)
Bases:
Metric
- class Result
Bases:
pybind11_object
- property confusion_matrix
- property prediction
- property target
- compute_results(self: ImagewiseClassificationMetrics, prediction: SharedImageSet, target: SharedImageSet) list[Result]
- class imfusion.machinelearning.InterleaveMode(*args, **kwargs)
Bases:
pybind11_object
Members:
Alternate
Proportional
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.InterleaveMode, value: int) -> None
__init__(self: imfusion.machinelearning._bindings.InterleaveMode, arg0: str) -> None
- Alternate = <InterleaveMode.Alternate: 0>
- Proportional = <InterleaveMode.Proportional: 1>
- property name
- property value
- class imfusion.machinelearning.InvertOperation(*args, **kwargs)
Bases:
Operation
Invert the intensities of the image: \(\textnormal{output} = -\textnormal{input}\).
- Parameters:
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.InvertOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.InvertOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.KeepLargestComponentOperation(*args, **kwargs)
Bases:
Operation
Create a label map with the largest components above the specified threshold. The output label map encodes each component with a different label value (1 for the largest, 2 for the second largest, etc.). Input images may be float or integer, output are unsigned 8-bit integer images (i.e. max 255 components). The operation will automatically set the default processing policy based on its input (if the input contains more than than one image, then only the label maps will be processed).
- Parameters:
max_number_components – the maximum number of components to keep. Default: 1
min_component_size – the minimum size of a component to keep. Default: -1, i.e. no minimum
max_component_size – the maximum size of a component to keep Default: -1, i.e. no maximum
threshold – the threshold to use for the binarization. Default: 0.5
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.KeepLargestComponentOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.KeepLargestComponentOperation, max_number_components: int = 1, min_component_size: int = -1, max_component_size: int = -1, threshold: float = 0.5, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.KeypointSet(*args, **kwargs)
Bases:
Data
Class for managing sets of keypoints
The class is meant to be used in parallel with SharedImageSet. For each frame in the set, and for each type of keypoint (i.e. body, pedicles, etc..), there is a list of points indicating an instance of that type in the reference image. In terms of tensor dimensions, this would be represented as [N, C, K], where N is the batch size, C is the number of channels (i.e. types of keypoints), and K is the number of keypoints for the same instance type. Each Keypoint is a vec3 having a further dimension [3].
Note
This class API is experimental and might change soon.
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.KeypointSet, points: list[list[list[numpy.ndarray[numpy.float64[3, 1]]]]]) -> None
__init__(self: imfusion.machinelearning._bindings.KeypointSet, points: list[list[list[list[float]]]]) -> None
__init__(self: imfusion.machinelearning._bindings.KeypointSet, array: numpy.ndarray[numpy.float64]) -> None
- static load(location: str) KeypointSet | None
Load a KeypointSet from an ImFusion file.
- Parameters:
location (str) – input path.
- save(self: KeypointSet, location: str) None
Save a KeypointSet as an ImFusion file.
- Parameters:
location (str) – output path.
- property data
- class imfusion.machinelearning.KeypointsElement(self: KeypointsElement, keypoint_set: KeypointSet)
Bases:
DataElement
Initialize a KeypointsElement.
- Parameters:
keypoint_set – In case the argument is a numpy array, the array shape is expected to be [N, C, K, 3], where N is the batch size, C the number of different keypoint types (channel), K the number of instances of the same point type, which are expected to have dimension 3. If the argument is a nested list, the same concept applies also to the size of each level of nesting.
- property keypoints
Access to the underlying KeypointSet.
- class imfusion.machinelearning.KeypointsFromBlobsOperation(*args, **kwargs)
Bases:
Operation
Extracts keypoints from blob image. Takes ImageElement specified in :code:’apply_to’ as input. If :code:’apply_to’ is not specified and there is only one image in the data item, this image will automatically be selected.
- Parameters:
keypoints_field_name – Field name of the output keypoints. Default: “keypoints”
keypoint_extraction_mode – Extraction mode: 0: Max, 1: Mean, 2: Local Max. Default: 0
blob_intensity_cutoff – Minimum blob intensity to be considered in analysis. Default: 0.02
min_cluster_distance – In case of local aggregation methods, minimum distance allowed among clusters. Default: 10.0
min_cluster_weight – In case of local aggregation methods, minimum intensity for cluster to be consider independent. Default: 0.1
max_internal_clusters – In case of local aggregation methods, maximum number of internal clusters to be considered; to avoid excessive numbers that stall the algorithm. If there are more, the lower weighted ones are removed first. Default: 1000
run_smoothing – Runs a Gaussian smoothing with 1 pixel standard deviation to improve stability of local maxima. Default: False
smoothing_half_kernel – Runs a Gaussian smoothing with 1 pixel standard deviation to improve stability of local maxima. Default: 2
run_intensity_based_refinement – Runs blob intensity based refinement of clustered keypoints. Default: False
apply_to – Field containing the blob image. If not specified and if there is only one image in the data item, this image will automatically be selected. Default: []
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.KeypointsFromBlobsOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.KeypointsFromBlobsOperation, keypoints_field_name: str = ‘keypoints’, keypoint_extraction_mode: int = 0, blob_intensity_cutoff: float = 0.02, min_cluster_distance: float = 10.0, min_cluster_weight: float = 0.1, max_internal_clusters: int = 1000, run_smoothing: bool = False, smoothing_half_kernel: int = 2, run_intensity_based_refinement: bool = False, apply_to: list[str] = [], *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.LabelROISampler(*args, **kwargs)
Bases:
ImageROISampler
Sampler which samples ROIs from the input image and label map, such that one particular label appears. For each ROI, one of the
labels_values
will be selected and the sampler will make sure that the ROI includes this label. If thesample_boundaries_only
flag is set to true, regions will at least have two different label values. If the constraints are not feasible, the sampler will either extract a random ROI with the target size or return an empty image, based on the flagfallback_to_random
. (The actual purpose of returning an empty image is to actually chain this sampler with a FilterDataLoader, so that images without a valid label are just completely skipped).- Parameters:
roi_size – Target size of the ROIs to be extracted as [Width, Height, Slices]
labels_values – List of integers representing the target labels
sample_boundaries_only – Make sure that the ROI contains a boundary (i.e. at least two different label values)
fallback_to_random – Whether to sample a random ROI or return an empty one when the target label values are not found. Default: True
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
- Other parameters accepted by configure():
label_padding_mode: EnumStringParam assigned to clamp in {clamp; mirror; zero}
padding_mode: EnumStringParam assigned to clamp in {clamp; mirror; zero}
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.LabelROISampler, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.LabelROISampler, roi_size: numpy.ndarray[numpy.int32[3, 1]], labels_values: list[int], sample_boundaries_only: bool, fallback_to_random: bool = True, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.LazyModule(name: str)
Bases:
object
Wrapper that delays importing a package until its attributes are accessed. We need this to keep the import time of the
ìmfusion
package reasonable.Note
This wrapper is fairly basic and does not support assignments to the modules, i.e. no monkey-patching.
- Parameters:
name (str) –
- class imfusion.machinelearning.LinearIntensityMappingOperation(*args, **kwargs)
Bases:
Operation
Apply a linear shift and scale to the image intensities. \(\textnormal{output} = \textnormal{factor} * \textnormal{input} + \textnormal{bias}\)
- Parameters:
factor – Multiplying factor (see formula). Default: 1.0
bias – Additive bias (see formula). Default: 0.0
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.LinearIntensityMappingOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.LinearIntensityMappingOperation, factor: float = 1.0, bias: float = 0.0, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.MRIBiasFieldCorrectionOperation(*args, **kwargs)
Bases:
Operation
Perform bias field correction using an implicitly trained neural network (see MRIBiasFieldCorrectionAlgorithm for more details and the parameters description).
- Parameters:
iterations – For values > 1, the field is iteratively refined. Default: 1
config_path – Path of the machine learning model (use “GENERIC3D” or “GENERIC2D” for the default models). Default: “GENERIC3D”
field_smoothing_half_kernel – For values > 0, additional smoothing with a Gaussian kernel. Default: -1
preserve_mean_intensity – Preserve the mean image intensity in the output. Default: True
output_is_field – Produce the field, not the corrected image. Default: False
field_dimensions – Internal field dimensions (zeroes represent the model default dimensions). Default: [0, 0, 0]
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.MRIBiasFieldCorrectionOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.MRIBiasFieldCorrectionOperation, iterations: int = 1, config_path: str = ‘GENERIC3D’, field_smoothing_half_kernel: int = -1, preserve_mean_intensity: bool = True, output_is_field: bool = False, field_dimensions: numpy.ndarray[numpy.int32[3, 1]] = array([0, 0, 0], dtype=int32), *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.MRIBiasFieldGenerationOperation(*args, **kwargs)
Bases:
Operation
Apply or generate a multiplicative intensity modulation field. If the output is a field, it is shifted as close to mean 1 as possible while remaining positive everywhere. If the output is not a field, the image intensity is shifted so that the mean intensity of the input image is preserved.
- Parameters:
length_scale_mm – Length scale (in mm) of the Gaussian radial basis function. Default: 100.0
field_amplitude – Total field amplitude (centered around one). I.e. 0.4 for a 40% field. Default: 0.4
center – Relative center of the Gaussian with respect to the image axes. Values from [0..1] for locations inside the image. Default: [0.25, 0.25, 0.25]
distance_scaling – Relative scaling of the x, y, z world coordinates for field anisotropy. Default: [1, 1, 1]
invert_field – Invert the final field: field <- 2 - field. Default: False
output_is_field – Produce the field, not the corrupted image. Note, the additive normalization method depends on this. Default: False
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.MRIBiasFieldGenerationOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.MRIBiasFieldGenerationOperation, length_scale_mm: float = 100.0, field_amplitude: float = 0.4, center: numpy.ndarray[numpy.float64[3, 1]] = array([0.25, 0.25, 0.25]), distance_scaling: numpy.ndarray[numpy.float64[3, 1]] = array([1., 1., 1.]), invert_field: bool = False, output_is_field: bool = False, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.MachineLearningModel(self: imfusion.machinelearning._bindings.MachineLearningModel, config_path: str, default_prediction_output: imfusion.machinelearning._bindings.PredictionOutput = <PredictionOutput.UNKNOWN: -1>)
Bases:
pybind11_object
Class for creating a MachineLearningModel.
Create a MachineLearningModel. If the resource required by the MachineLearningModel could not be acquired, raises a RuntimeError.
- Parameters:
config_path (str) – Path to the configuration file used to create ModelConfiguration object owned by the model.
default_prediction_output (PredictionOutput) – Parameter used to specify the prediction output of a model if this is missing from the config file. The prediction output type must be specified either here or in the configuration file under the key PredictionOutput. If it is specified in both places, the one from the config file is used.
- engine(self: MachineLearningModel) Engine
Returns the underlying engine used by the model. This can be useful for setting CPU/GPU mode, querying whether CUDA is available, etc.
- predict(*args, **kwargs)
Overloaded function.
predict(self: imfusion.machinelearning._bindings.MachineLearningModel, input: imfusion.machinelearning._bindings.DataItem) -> imfusion.machinelearning._bindings.DataItem
Method to execute a generic multiple input/multiple output model The input and output type of a machine learning model is the DataItem, which allows to give and retrieve an heterogeneous map-type container of the data needed and returned by the model.
- Parameters:
input (DataItem) – Input data item containing all data to be used for inference
predict(self: imfusion.machinelearning._bindings.MachineLearningModel, images: imfusion._bindings.SharedImageSet) -> imfusion._bindings.SharedImageSet
Convenience method to execute a single-input/single-output image-based model.
- Parameters:
images (SharedImageSet) – Input image set to be used for inference
- property label_names
Dict of the list of label names for each output. Keys are the engine output names if specified, else “Prediction”.
- class imfusion.machinelearning.MakeFloatOperation(*args, **kwargs)
Bases:
Operation
Convert the input image to float with original values (internal shifts and scales are baked in).
- Parameters:
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.MakeFloatOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.MakeFloatOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.MarkAsTargetOperation(*args, **kwargs)
Bases:
Operation
Mark elements from the input data item as learning “target” which might affect the behaviour of the subsequent operations that rely on
ProcessingPolicy
or use other custom target-specific logic.- Parameters:
apply_to – fields to mark as targets (will initialize the underlying
apply_to
parameter)device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.MarkAsTargetOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.MarkAsTargetOperation, apply_to: list[str], *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.MergeAsChannelsOperation(*args, **kwargs)
Bases:
Operation
Merge multiple DataElements into a single one along the channel dimension. Only applicable for ImageElements and VectorElements.
- Parameters:
apply_to – fields which should be merged.
output_field – name of the resulting field.
remove_fields – remove fields used for merging from the data item. Default: True
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.MergeAsChannelsOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.MergeAsChannelsOperation, apply_to: list[str] = [], output_field: str = ‘’, remove_fields: bool = True, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.Metric
Bases:
pybind11_object
- configuration(self: Metric) Properties
- configure(self: Metric, properties: Properties) None
- property data_scheme
- class imfusion.machinelearning.ModelType(*args, **kwargs)
Bases:
pybind11_object
Members:
NEURAL_NETWORK
NEURAL_NETWORK_LEGACY
RANDOM_FOREST
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.ModelType, value: int) -> None
__init__(self: imfusion.machinelearning._bindings.ModelType, arg0: str) -> None
- NEURAL_NETWORK = <ModelType.NEURAL_NETWORK: 2>
- NEURAL_NETWORK_LEGACY = <ModelType.NEURAL_NETWORK_LEGACY: 1>
- RANDOM_FOREST = <ModelType.RANDOM_FOREST: 0>
- property name
- property value
- class imfusion.machinelearning.MorphologicalFilterOperation(*args, **kwargs)
Bases:
Operation
Runs a morphological operation on the input.
- Parameters:
mode – name of the operation in [‘dilation’, ‘erosion’, ‘opening’, ‘closing’]
op_size – size of the structuring element
use_l1_distance – flag to use L1 (absolute) or L2 (squared) distance in the local computations
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.MorphologicalFilterOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.MorphologicalFilterOperation, mode: str, op_size: int, use_l1_distance: bool, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.NormalizeMADOperation(*args, **kwargs)
Bases:
Operation
Normalize the input image based on robust statistics. The image is shifted so that the median corresponds to 0 and normalized with the median absolute deviation (see https://en.wikipedia.org/wiki/Median_absolute_deviation). The operation is performed channel-wise.
- Parameters:
selected_channels – channels selected for MAD normalization. If empty, all channels are normalized (default).
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
- Other parameters accepted by configure():
fix_median: False
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.NormalizeMADOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.NormalizeMADOperation, selected_channels: list[int] = [], *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.NormalizeNormalOperation(*args, **kwargs)
Bases:
Operation
Normalize the input image so that it has a zero-mean and a unit-standard deviation. A particular intensity value can be set to be ignored during the computations.
- Parameters:
keep_background – Should ignore all intensities with
background_value
. Default: Falsebackground_value – Intensity value to be potentially ignored. Default: 0.0
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.NormalizeNormalOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.NormalizeNormalOperation, keep_background: bool = False, background_value: float = 0, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.NormalizePercentileOperation(*args, **kwargs)
Bases:
Operation
Normalize the input image based on its intensity distribution, in particular on a lower and upper percentile. The output image is not guaranteed to be in [0;1] but the lower percentile will be mapped to 0 and the upper one to 1.
- Parameters:
min_percentile – Lower percentile in [0;1]. Default: 0.0
max_percentile – Lower percentile in [0;1], Default: 1.0
clamp_values – Intensities are clipped to the new range. Default: False
ignore_zeros – Whether to ignore zeros when computing the percentiles. Default: False
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.NormalizePercentileOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.NormalizePercentileOperation, min_percentile: float = 0.0, max_percentile: float = 1.0, clamp_values: bool = False, ignore_zeros: bool = False, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.NormalizeUniformOperation(*args, **kwargs)
Bases:
Operation
Normalize the input image based so their minimum/maximum intensity so that the output image has a [min; max] range. The operation is performed channel-wise.
- Parameters:
min – New minimum value of the image after normalization. Default: 0.0
max – New maximum value of the image after normalization. Default: 1.0
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.NormalizeUniformOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.NormalizeUniformOperation, min: float = 0.0, max: float = 1.0, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.OneHotOperation(*args, **kwargs)
Bases:
Operation
Encode a single channel label image, to a one-hot representation of ‘channels’ channels. If encode_background is off, label ‘0’ will denote the background and doesn’t encode to anything, Label ‘1’ will set the value ‘1’ in the first channel, Label ‘2’ will set the value ‘1’ in the second channels, etc. If encode_background is on, label ‘0’ will be the background and set the value ‘1’ in the first channel, Label ‘1’ will set the value ‘1’ in the second channel, etc. The number of channels must be large enough to contain this encoding.
- Parameters:
num_channels – Number of channels in the output. Must be equal or larger to the highest possible label value. Default: 0
encode_background – whether to encode background in first channel. Default: True
to_ubyte – return label as ubyte (=int8) instead of float. Default: False
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.OneHotOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.OneHotOperation, num_channels: int = 0, encode_background: bool = True, to_ubyte: bool = False, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.Operation(self: imfusion.machinelearning._bindings.Operation, name: str, processing_policy: imfusion.machinelearning._bindings.Operation.ProcessingPolicy = <ProcessingPolicy.EVERYTHING_BUT_LABELS: 0>, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None)
Bases:
pybind11_object
- class ProcessingPolicy(*args, **kwargs)
Bases:
pybind11_object
Members:
EVERYTHING_BUT_LABELS
EVERYTHING
ONLY_LABELS
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.Operation.ProcessingPolicy, value: int) -> None
__init__(self: imfusion.machinelearning._bindings.Operation.ProcessingPolicy, arg0: str) -> None
- EVERYTHING = <ProcessingPolicy.EVERYTHING: 1>
- EVERYTHING_BUT_LABELS = <ProcessingPolicy.EVERYTHING_BUT_LABELS: 0>
- ONLY_LABELS = <ProcessingPolicy.ONLY_LABELS: 2>
- property name
- property value
- class Specs(*args, **kwargs)
Bases:
pybind11_object
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.Operation.Specs) -> None
__init__(self: imfusion.machinelearning._bindings.Operation.Specs, name: str, configuration: imfusion._bindings.Properties, when_to_apply: imfusion.machinelearning._bindings.Phase) -> None
- property name
- property prop
- property when_to_apply
- configuration(self: Operation) Properties
- configure(self: Operation, properties: Properties) bool
- process(*args, **kwargs)
Overloaded function.
process(self: imfusion.machinelearning._bindings.Operation, item: imfusion.machinelearning._bindings.DataItem) -> None
Execute the operation on the input DataItem in-place, i.e. the input item will be modified.
process(self: imfusion.machinelearning._bindings.Operation, images: imfusion._bindings.SharedImageSet, in_place: bool = False) -> imfusion._bindings.SharedImageSet
- Execute the operation on the input images and returns its output.
- Args:
images (SharedImageSet): the input images. in_place (bool): If False, the input is guaranteed to be unchanged and the function will return a new object. If True, the input will be changed and the function will return it. (Default: False).
process(self: imfusion.machinelearning._bindings.Operation, points: imfusion.machinelearning._bindings.KeypointSet, in_place: bool = False) -> imfusion.machinelearning._bindings.KeypointSet
- Execute the operation on the input keypoints. The output will always be a different set of keypoints, i.e. this function never works in-place.
- Args:
points (SharedImageSet): the input points. in_place (bool): if True, the input will be changed and the function will return it. If False, the input is guaranteed to be unchanged and the function will return a new object (Default: False).
process(self: imfusion.machinelearning._bindings.Operation, boxes: imfusion.machinelearning._bindings.BoundingBoxSet, in_place: bool = False) -> imfusion.machinelearning._bindings.BoundingBoxSet
- Execute the operation on the input bounding boxes. The output will always be a different set of bounding boxes, i.e. this function never works in-place.
- Args:
boxes (SharedImageSet): the input boxes. in_place (bool): If False, the input is guaranteed to be unchanged and the function will return a new object. If True, the input will be changed and the function will return it. (Default: False).
- EVERYTHING = <ProcessingPolicy.EVERYTHING: 1>
- EVERYTHING_BUT_LABELS = <ProcessingPolicy.EVERYTHING_BUT_LABELS: 0>
- ONLY_LABELS = <ProcessingPolicy.ONLY_LABELS: 2>
- property active_fields
Fields in the data item that this operation will process.
- property computing_device
The computing device property.
- property does_not_modify_input
- property error_on_unexpected_behaviour
Treat unexpected behaviour warnings as errors.
- property name
- property processing_policy
The processing_policy property. Resetting it overrides the default operation behaviour on label.
- property seed
- class imfusion.machinelearning.OperationsSequence(*args, **kwargs)
Bases:
pybind11_object
Helper class that executes a list of operations sequentially. This class tries to minimize the number of intermediate copies and should be used for performance reasons.
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.OperationsSequence) -> None
Default constructor that initializes the class with an empty list of operations.
__init__(self: imfusion.machinelearning._bindings.OperationsSequence, pipeline_config: list[tuple[str, imfusion._bindings.Properties, imfusion.machinelearning._bindings.Phase]]) -> None
Init the sequential processing with a pipeline of Operations and their relative specs. The operations are executed according to their pipeline order.
- Parameters:
pipeline_config – List of specs for the operations to add to the sequence.
- add_operation(*args, **kwargs)
Overloaded function.
add_operation(self: imfusion.machinelearning._bindings.OperationsSequence, operation: imfusion.machinelearning._bindings.Operation, phase: imfusion.machinelearning._bindings.Phase = <Phase.ALWAYS: 7>) -> bool
Add an operation to the sequential processing. The operations are executed according to the addition order.
- Parameters:
operation – operation instance to add to the sequence.
phase – when to execute the added operation. Default: Phase.Always
add_operation(self: imfusion.machinelearning._bindings.OperationsSequence, name: str, properties: imfusion._bindings.Properties, phase: imfusion.machinelearning._bindings.Phase = <Phase.ALWAYS: 7>) -> None
Add an operation to the sequential processing. The operations are executed according to the addition order.
- Parameters:
name – name of the operation to add to the sequence. You must use the name used for registering the op in the operation factory. A list of the available ops can be retrieved by
available_operations())()
.properties – properties to configure the operation.
phase – specifies at which execution phase should the operation be run.
- static available_cpp_operations() list[str]
Returns the list of registered C++ operations available for usage in OperationsSequence.
- static available_operations() list[str]
Returns the list of all registered operations available for usage in OperationsSequence.
- static available_py_operations() list[str]
Returns the list of registered Python operations available for usage in OperationsSequence.
- ok(self: OperationsSequence) bool
Returns whether operation setup was successful.
- operation_names(self: OperationsSequence) list[str]
Returns the operation names added to the sequence.
- process(*args, **kwargs)
Overloaded function.
process(self: imfusion.machinelearning._bindings.OperationsSequence, input: imfusion._bindings.SharedImageSet, exec_phase: imfusion.machinelearning._bindings.Phase = <Phase.ALWAYS: 7>, in_place: bool = True) -> imfusion._bindings.SharedImageSet
Execute the preprocessing pipeline on the given input images. This function never works in-place.
- Parameters:
input – input image
exec_phase –
specifies the execution phase of the preprocessing pipeline. The execution will run only those operations whose phase (specified in the specs) corresponds to the current exec_phase, with the following exceptions:
Operations marked with phase == Phase.Always are always run regardless of the exec_phase.
If exec_phase == Phase.Always, all operations in the preprocessing pipeline are run regardless of their individual phase.
in_place (bool): If False, the input is guaranteed to be unchanged and the function will return a new object. If True, the input will be changed and the function will return it. (Default: False).
process(self: imfusion.machinelearning._bindings.OperationsSequence, input: imfusion.machinelearning._bindings.DataItem, exec_phase: imfusion.machinelearning._bindings.Phase = <Phase.ALWAYS: 7>) -> bool
Execute the preprocessing pipeline on the given input. This function always works in-place, i.e. the input DataItem will be modified.
- Parameters:
input – DataItem to be processed
exec_phase –
specifies the execution phase of the preprocessing pipeline. The execution will run only those operations whose phase (specified in the specs) corresponds to the current exec_phase, with the following exceptions:
Operations marked with phase == Phase.Always are always run regardless of the exec_phase.
If exec_phase == Phase.Always, all operations in the preprocessing pipeline are run regardless of their individual phase.
- set_error_on_unexpected_behaviour(self: OperationsSequence, arg0: bool) None
Set flag on all operations whether to throw an error when an operation warn about an unexpected behaviour.
- property operations
- class imfusion.machinelearning.OrientedROISampler(*args, **kwargs)
Bases:
ImageROISampler
The OrientedROISampler draws
num_samples
randomly ROIs of sizeroi_size
with spacingroi_spacing
per dataset. The sampler takesn_guided = floor(sample_from_labels_proportion * num_samples)
label guided samples, and uniformly random samples for the rest of the samples. Labelmaps and Keypoints are supported for label guided sampling; for labelmap sampling, the labelmap is interpreted as a probabilistic output and sampled accordingly (thus negative values break the sampling, and labelmaps need to be one-hot encoded in case of multiple label values). Random augmentations can applied, including rotation, flipping, shearing, scaling and jitter. These augmentations are directly changing the matrix of the sample, thus the samples are not guaranteed to be affine or even in a right-handed coordinate system. The samples retain their matrices, so they can be viewed in their original position. May throw an ImageSamplerError- Parameters:
roi_size – Target size of the ROIs to be extracted as [Width, Height, Slices]
roi_spacing – Target spacing of the ROIs to be extracted in mm
num_samples – Number of samples to draw from one image
random_rotation_range – Vector defining deviation in quaternion rotation over the corresponding axis. Default: [0, 0, 0]
random_flipping_chance – Vector defining the change that corresponding dimension gets flipped. Default: [0, 0, 0]
random_shearing_range – Vector defining the range of proportional shearing in each dimension. Default: [0, 0, 0]
random_scaling_range – Vector defining the range of scaling in each dimension. Default: [0, 0, 0]
random_jitter_range – Vector defining the range of jitter applied on top of the crop location, defined as the standard deviation in mm in each dimension. Default: [0, 0, 0]
sample_from_labels_proportion – Proportion of ROIs that is sampled from the label values. Default: 0
avoid_borders – When taking random samples, the samples avoid to see the border if this is turned on. Default: off
align_crop – Align crop to image grid system, before applying augmentations
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
- Other parameters accepted by configure():
padding_mode: EnumStringParam assigned to zero in {clamp; mirror; zero}
squeeze: False
label_padding_mode: EnumStringParam assigned to zero in {clamp; mirror; zero}
y_axis_down: False
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.OrientedROISampler, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.OrientedROISampler, roi_size: numpy.ndarray[numpy.int32[3, 1]], roi_spacing: numpy.ndarray[numpy.float64[3, 1]], num_samples: int, random_rotation_range: numpy.ndarray[numpy.float64[3, 1]], random_flipping_chance: numpy.ndarray[numpy.float64[3, 1]], random_shearing_range: numpy.ndarray[numpy.float64[3, 1]], random_scaling_range: numpy.ndarray[numpy.float64[3, 1]], random_jitter_range: numpy.ndarray[numpy.float64[3, 1]], sample_from_labels_proportion: float = 0.0, avoid_borders: bool = False, align_crop: bool = False, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.PadDimsOperation(*args, **kwargs)
Bases:
Operation
This operation expands an image by adding padding pixels to any or all sides. The value of the border can be specified by the padding mode.
The padding mode can be one of the following: - Clamp: The border pixels are the same as the closest image pixel. - Mirror: The border pixels are the same as the closest image pixel. - Zero: Constant padding with zeros or, if provided, with paddingValue.
- Note: the padding widths are evenly distributed to the left and right of the input image.
If the difference
delta
between the target dimensions and the input dimensions is odd, the padding is distributed as delta / 2 to the left and delta / 2 + 1 to the right.
- Parameters:
target_dims – Target dimensions [width, height, depth] for the padded image. Default: [1, 1, 1]
padding_mode – Mode for padding (Clamp, Mirror, Zero). Default: PaddingMode.CLAMP
padding_value – Value to use for padding when using Zero mode (optional). Default: None
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.PadDimsOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.PadDimsOperation, target_dims: numpy.ndarray[numpy.int32[3, 1]] = array([1, 1, 1], dtype=int32), padding_mode: imfusion._bindings.PaddingMode = <PaddingMode.CLAMP: 2>, padding_value: Optional[float] = None, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.PadOperation(*args, **kwargs)
Bases:
Operation
Pad an image to a specific padding size in each dimension
This operation expands an image by adding padding pixels to any or all sides. The value of the border can be specified by the padding mode.
The padding mode can be one of the following: - Clamp: The border pixels are the same as the closest image pixel. - Mirror: The border pixels are the same as the closest image pixel. - Zero: Constant padding with zeros or, if provided, with paddingValue.
Note: Padding sizes are specified in pixels, and can be positive, negative or mixed. Negative padding means cropping. Note: Both GPU and CPU implementations are provided.
- Parameters:
pad_size_x – Padding width in pixels for X dimension [left, right]. Default: [0, 0]
pad_size_y – Padding width in pixels for Y dimension [top, bottom]. Default: [0, 0]
pad_size_z – Padding width in pixels for Z dimension [front, back]. Default: [0, 0]
padding_mode – Mode for padding (Clamp, Mirror, Zero). Default: PaddingMode.CLAMP
padding_value – Value to use for padding when using Zero mode (optional). Default: None
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.PadOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.PadOperation, pad_size_x: numpy.ndarray[numpy.int32[2, 1]] = array([0, 0], dtype=int32), pad_size_y: numpy.ndarray[numpy.int32[2, 1]] = array([0, 0], dtype=int32), pad_size_z: numpy.ndarray[numpy.int32[2, 1]] = array([0, 0], dtype=int32), padding_mode: imfusion._bindings.PaddingMode = <PaddingMode.CLAMP: 2>, padding_value: Optional[float] = None, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.ParamUnit(*args, **kwargs)
Bases:
pybind11_object
Members:
MM
VOXEL
FRACTION
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.ParamUnit, value: int) -> None
__init__(self: imfusion.machinelearning._bindings.ParamUnit, arg0: str) -> None
- FRACTION = FRACTION
- MM = MM
- VOXEL = VOXEL
- property name
- property value
- class imfusion.machinelearning.Phase(*args, **kwargs)
Bases:
pybind11_object
Members:
TRAIN
VALIDATION
TEST
ALWAYS
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.Phase, value: int) -> None
__init__(self: imfusion.machinelearning._bindings.Phase, arg0: str) -> None
__init__(self: imfusion.machinelearning._bindings.Phase, arg0: list[str]) -> None
- ALWAYS = <Phase.ALWAYS: 7>
- TEST = <Phase.TEST: 4>
- TRAIN = <Phase.TRAIN: 1>
- VALIDATION = <Phase.VALIDATION: 2>
- property name
- property value
- class imfusion.machinelearning.PixelwiseClassificationMetrics(self: PixelwiseClassificationMetrics)
Bases:
Metric
- compute_per_label(self: PixelwiseClassificationMetrics, arg0: SharedImageSet, arg1: SharedImageSet) list[dict[str, dict[int, float]]]
- class imfusion.machinelearning.PolyCropOperation(*args, **kwargs)
Bases:
Operation
Masks the image with a convex polygon as described in Markova et al. 2022. (https://arxiv.org/abs/2205.03439)
- Parameters:
points – Each point (texture coordinates) in
points
defines a plane (perpendicular to the direction from the center to the point), this plane splits the volume in two parts, the part of the image that doesn’t contain the image center is discarded.device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.PolyCropOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.PolyCropOperation, points: list[numpy.ndarray[numpy.float64[3, 1]]] = [], *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.PredictionOutput(*args, **kwargs)
Bases:
pybind11_object
Members:
UNKNOWN
VECTOR
IMAGE
KEYPOINTS
BOUNDING_BOXES
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.PredictionOutput, value: int) -> None
__init__(self: imfusion.machinelearning._bindings.PredictionOutput, arg0: str) -> None
- BOUNDING_BOXES = <PredictionOutput.BOUNDING_BOXES: 3>
- IMAGE = <PredictionOutput.IMAGE: 1>
- KEYPOINTS = <PredictionOutput.KEYPOINTS: 2>
- UNKNOWN = <PredictionOutput.UNKNOWN: -1>
- VECTOR = <PredictionOutput.VECTOR: 0>
- property name
- property value
- class imfusion.machinelearning.PredictionType(*args, **kwargs)
Bases:
pybind11_object
Members:
UNKNOWN
CLASSIFICATION
REGRESSION
OBJECT_DETECTION
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.PredictionType, value: int) -> None
__init__(self: imfusion.machinelearning._bindings.PredictionType, arg0: str) -> None
- CLASSIFICATION = <PredictionType.CLASSIFICATION: 0>
- OBJECT_DETECTION = <PredictionType.OBJECT_DETECTION: 2>
- REGRESSION = <PredictionType.REGRESSION: 1>
- UNKNOWN = <PredictionType.UNKNOWN: -1>
- property name
- property value
- class imfusion.machinelearning.ProcessingRecordComponent(self: ProcessingRecordComponent)
Bases:
DataComponentBase
- class imfusion.machinelearning.RandomAddDegradedLabelAsChannelOperation(*args, **kwargs)
Bases:
Operation
Append a channel to the image that contains a randomly degraded version of the label.
- Parameters:
blob_radius – Radius of each blob, in pixel coordinates. Default: 5.0.
probability_no_blobs – Probability that zero blobs are chosen. Default: 0.1
probability_invert – Probability of inverting the blobs, in this case the extra channel is positive/negative based on the label except at blobs, where it is zero. Default: 0.0
mean_num_blobs – Mean of (Poisson-distributed) number of blobs to draw, conditional on
probability_no_blobs
. Default: 100.0only_positive – If true, output channel is clamped to zero from below. Default: False
label_dilation_range – The label_dilation parameter of the underlying AddDegradedLabelAsChannelOperation is uniformly drawn from this range. Default: [0.0, 0.0]
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
- Other parameters accepted by configure():
dilation_range: 0 0
probability: 1.0
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RandomAddDegradedLabelAsChannelOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RandomAddDegradedLabelAsChannelOperation, blob_radius: float = 5.0, probability_no_blobs: float = 0.1, probability_invert: float = 0.0, mean_num_blobs: float = 100.0, only_positive: bool = False, dilation_range: numpy.ndarray[numpy.float64[2, 1]] = array([0., 0.]), *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.RandomAddRandomNoiseOperation(*args, **kwargs)
Bases:
Operation
Apply
AddRandomNoiseOperation
to images with randomized intensity parameter.- Parameters:
type – Distribution of the noise (‘uniform’, ‘gaussian’, ‘gamma’,’shot’). Default: ‘uniform’. See
AddRandomNoiseOperation
. intensity_range: Range of the interval used to draw the intensity parameter. Default: [0.0, 0.0]. Absolute values of drawn values are taken.device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)probability – Float in [0, 1] defining the probability for the operation to be executed. Default: 1.0
- Other parameters accepted by configure():
intensity_range: 0 0
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RandomAddRandomNoiseOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RandomAddRandomNoiseOperation, type: str = ‘uniform’, intensity_range: numpy.ndarray[numpy.float64[2, 1]] = array([0., 0.]), probability: float = 1.0, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.RandomAxisFlipOperation(*args, **kwargs)
Bases:
Operation
Flip image content along specified set of axes, with independent sampling for each axis.
- Parameters:
axes – List of strings from {‘x’,’y’,’z’} specifying the axes to flip. For 2D images, only ‘x’ and ‘y’ are valid.
probability – Float in [0;1] defining the probability for the operation to be executed. Default: 1.0
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RandomAxisFlipOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RandomAxisFlipOperation, axes: list[str] = [], probability: float = 1.0, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.RandomAxisRotationOperation(*args, **kwargs)
Bases:
Operation
Rotate image around image axis with independently drawn axis-specific random rotation angle of +-{90, 180, 270} degrees.
- Parameters:
axes – List of strings from {‘x’,’y’,’z’} specifying the axes to rotate around. For 2D images, only [‘z’] is valid.
probability – Float in [0;1] defining the probability for the operation to be executed. Default: 1.0
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RandomAxisRotationOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RandomAxisRotationOperation, axes: list[str] = [], probability: float = 1.0, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.RandomChoiceOperation(*args, **kwargs)
Bases:
Operation
Meta-operation that picks one operation from its configuration randomly and executes it. This is particularly useful for image samplers, where we might want to alternate between different ways of sampling the input images.
- Parameters:
operation_specs – List of operation Specs to configure the operations to be added.
operation_weights – Weights associated to the each operation during the sampling process. A higher relative weight given to an operation means that this operation will be sampled more often.
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RandomChoiceOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RandomChoiceOperation, operation_specs: list[imfusion.machinelearning._bindings.Operation.Specs] = [], operation_weights: list[float] = [], *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RandomChoiceOperation, operation_specs: list[tuple[str, imfusion._bindings.Properties, imfusion.machinelearning._bindings.Phase]], operation_weights: list[float] = []) -> None
Meta-operation that picks one operation from its configuration randomly and executes it. This is particularly useful for image samplers, where we might want to alternate between different ways of sampling the input images.
- Parameters:
operation_specs – List of operation (name, Properties, Phase) casted into Specs to configure the operations to be added.
operation_weights – Weights associated to the each operation during the sampling process. A higher relative weight given to an operation means that this operation will be sampled more often.
__init__(self: imfusion.machinelearning._bindings.RandomChoiceOperation, operations: list[imfusion.machinelearning._bindings.Operation], operation_weights: list[float]) -> None
Meta-operation that picks one operation from its configuration randomly and executes it. This is particularly useful for image samplers, where we might want to alternate between different ways of sampling the input images.
- Parameters:
operations – List of operations to be added.
operation_weights – Weights associated to the each operation during the sampling process. A higher relative weight given to an operation means that this operation will be sampled more often.
- class imfusion.machinelearning.RandomCropAroundLabelMapOperation(*args, **kwargs)
Bases:
Operation
Crops the input image and label to the bounds of a random label value, and sets the label value to 1 and all other values to zero in the resulting label.
- Parameters:
margin – Margin, in pixels. Default: 1
reorder – Whether label value in result should be mapped to 1. Default: False
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
- Other parameters accepted by configure():
probability: 1.0
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RandomCropAroundLabelMapOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RandomCropAroundLabelMapOperation, margin: int = 1, reorder: bool = False, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.RandomCropOperation(*args, **kwargs)
Bases:
Operation
Crop input images and label maps with a matching random size and offset.
- Parameters:
crop_range – List of floats from [0;1] specifying the maximum percentage of the dimension to crop. Default: [0.0, 0.0, 0.0]
probability – Float in [0;1] defining the probability for the operation to be executed. Default: 1.0
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RandomCropOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RandomCropOperation, crop_range: numpy.ndarray[numpy.float64[3, 1]] = array([0., 0., 0.]), probability: float = 1.0, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.RandomCutOutOperation(*args, **kwargs)
Bases:
Operation
Apply a random cutout to the image.
- Parameters:
cutout_size_lower – List of doubles specifying the lower bound of the cutout region size for each dimension in mm. Default: [0, 0, 0]
cutout_size_upper – List of doubles specifying the upper bound of the cutout region size for each dimension in mm. Default: [0, 0, 0]
cutout_value_range – List of floats specifying the minimum and maximum fill value for cutout regions. Default: [0, 0]
cutout_number_range – List of integers specifying the minimum and maximum number of cutout regions. Default: [0, 0]
cutout_size_units – Units of the cutout size. Default:
MM
probability – Float in [0;1] defining the probability for the operation to be executed.
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RandomCutOutOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RandomCutOutOperation, cutout_size_lower: numpy.ndarray[numpy.float64[3, 1]] = array([0., 0., 0.]), cutout_size_upper: numpy.ndarray[numpy.float64[3, 1]] = array([0., 0., 0.]), cutout_value_range: numpy.ndarray[numpy.float32[2, 1]] = array([0., 0.], dtype=float32), cutout_number_range: numpy.ndarray[numpy.int32[2, 1]] = array([0, 0], dtype=int32), cutout_size_units: imfusion.machinelearning._bindings.ParamUnit = MM, probability: float = 1.0, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.RandomDeformationOperation(*args, **kwargs)
Bases:
Operation
Apply a deformation to the image using a specified control point grid and random displacements
- Parameters:
num_subdivisions – list specifying the number of subdivisions for each dimension (the number of control points is subdivisions+1). Default: [1, 1, 1]
max_abs_displacement – absolute value of the maximum possible displacement (mm). Default: 1
padding_mode – defines which type of padding is used. Default:
ZERO
probability – probability of applying this Operation. Default: 1.0
adjust_size – configures whether the resulting image should adjust its size to encompass the deformation. Default: False
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RandomDeformationOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RandomDeformationOperation, num_subdivisions: numpy.ndarray[numpy.int32[3, 1]] = array([1, 1, 1], dtype=int32), max_abs_displacement: float = 1, padding_mode: imfusion._bindings.PaddingMode = <PaddingMode.ZERO: 0>, probability: float = 1.0, adjust_size: bool = False, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.RandomGammaCorrectionOperation(*args, **kwargs)
Bases:
Operation
Apply a random gamma correction to the image intensities. Output = Unnormalize(pow(Normalize(Input), gamma)) where
gamma
is drawn uniformly in [1-random_range; 1+random_range].- Parameters:
random_range – Range of the interval used to draw the gamma correction, typically in [0; 0.5]. Default: 0.2
probability – Float in [0;1] defining the probability for the operation to be executed. Default: 1.0
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RandomGammaCorrectionOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RandomGammaCorrectionOperation, random_range: float = 0.2, probability: float = 1.0, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.RandomImageFromLabelOperation(*args, **kwargs)
Bases:
Operation
Creates a random image from a label map, each label is sampled from a Gaussian distribution. Each Gaussian distribution parameters (mean and standard deviation) are uniformly sampled withing the provided intervals (respectively mean_range and standard_dev_range).
- Parameters:
mean_range – Range of means for the intensities’ Gaussian distributions.
standard_dev_range – Range of standard deviations for the intensities’ Gaussian distributions.
output_field – Output field for the generated image.
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RandomImageFromLabelOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RandomImageFromLabelOperation, mean_range: numpy.ndarray[numpy.float64[2, 1]], standard_dev_range: numpy.ndarray[numpy.float64[2, 1]], output_field: str = ‘ImageFromLabel’, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.RandomInvertOperation(*args, **kwargs)
Bases:
Operation
Invert the intensities of the image: \(\textnormal{output} = -\textnormal{input}\).
- Parameters:
probability – Float in [0;1] defining the probability for the operation to be executed. Default: 0.5
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RandomInvertOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RandomInvertOperation, probability: float = 0.5, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.RandomKeypointJitterOperation(*args, **kwargs)
Bases:
Operation
Adds an individually and randomly sampled offset to each keypoint of each KeypointElement.
- Parameters:
offset_std_dev – standard deviation of the normal distribution used to sample the jitter in mm
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RandomKeypointJitterOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RandomKeypointJitterOperation, offset_std_dev: float, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.RandomLinearIntensityMappingOperation(*args, **kwargs)
Bases:
Operation
Apply a random linear shift and scale to the image intensities. \(\textnormal{output} = \textnormal{factor}_\textnormal{random} * \textnormal{input} + \textnormal{bias}_\textnormal{random}\) ,
where \(\textnormal{factor}_\textnormal{random}\) is drawn uniformly in \([1-\textnormal{random_range}, 1+\textnormal{random_range}]\)and \(\textnormal{bias}_\textnormal{random}\) is drawn uniformly in \([-\textnormal{random_range}*(\max(\textnormal{input})-\min(\textnormal{input})), \textnormal{random_range}*(\max(\textnormal{input})-\min(\textnormal{input}))]\).- Parameters:
random_range – Perturbation amplitude, typically in [0.0, 1.0]. Default: 0.2
probability – Float in [0, 1] defining the probability for the operation to be executed. Default: 1.0
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RandomLinearIntensityMappingOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RandomLinearIntensityMappingOperation, random_range: float = 0.2, probability: float = 1.0, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.RandomMRIBiasFieldGenerationOperation(*args, **kwargs)
Bases:
Operation
Apply or generate a random multiplicative intensity modulation field. If the output is a field, it is shifted as close to mean 1 as possible while remaining positive everywhere. If the output is not a field, the image intensity is shifted so that the mean intensity of the input image is preserved.
- Parameters:
center_beta_dist_params – Beta distribution parameters for sampling the relative center coordinate locations. Default: [0.0, 1.0]
field_amplitude_random_range – Amplitude of the field. Default: [0.2, 0.5]
length_scale_mm_random_range – Range of length scale of the distance kernel in mm. Default: [50.0, 400.0]
distance_scaling_random_range – Range of relative scaling of scanner space coordinates for anisotropic fields. Default: [0.5, 1.0]
invert_probability – Probability to invert the field (before normalization): field <- 2.0 - field. Default: 0.0
output_is_field – Produce field instead of corrupted image. Default: False
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
- Other parameters accepted by configure():
probability: 1.0
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RandomMRIBiasFieldGenerationOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RandomMRIBiasFieldGenerationOperation, center_beta_dist_params: numpy.ndarray[numpy.float64[2, 1]] = array([0., 1.]), field_amplitude_random_range: numpy.ndarray[numpy.float64[2, 1]] = array([0.2, 0.5]), length_scale_mm_random_range: numpy.ndarray[numpy.float64[2, 1]] = array([ 50., 400.]), distance_scaling_random_range: numpy.ndarray[numpy.float64[2, 1]] = array([0.5, 1. ]), invert_probability: float = 0.0, output_is_field: bool = False, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.RandomPolyCropOperation(*args, **kwargs)
Bases:
Operation
Masks the image with a random convex polygon as described in Markova et al. 2022 (https://arxiv.org/abs/2205.03439) The convex polygon mask is constructed by sampling random planes, each plane splits the volume in two parts, the part of the image that doesn’t contain the image center is discarded.
- Parameters:
number_range – Range of integers specifying the minimum and maximum number of cutting planes. Default: [5, 10]
min_radius – The minimum distance a cutting plane must have from the center (image coordinates are normalized to [-1, 1]). Default: 1.0
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
- Other parameters accepted by configure():
probability: 1.0
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RandomPolyCropOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RandomPolyCropOperation, number_range: numpy.ndarray[numpy.int32[2, 1]] = array([ 5, 10], dtype=int32), min_radius: float = 1.0, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.RandomROISampler(*args, **kwargs)
Bases:
ImageROISampler
Sampler which randomly samples ROIs from the input image and label map with a target The images will be padded if the target size is larger than the input image.
- Parameters:
roi_size – Target size of the ROIs to be extracted as [Width, Height, Slices]
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
- Other parameters accepted by configure():
label_padding_mode: EnumStringParam assigned to clamp in {clamp; mirror; zero}
padding_mode: EnumStringParam assigned to clamp in {clamp; mirror; zero}
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RandomROISampler, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RandomROISampler, roi_size: numpy.ndarray[numpy.int32[3, 1]], *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.RandomResolutionReductionOperation(*args, **kwargs)
Bases:
Operation
Downsamples the image to a target_spacing and upsamples again to the original spacing to reduce image information. The
target_spacing
is sampled uniformly and independently in each dimension between the corresponding image spacing andmax_spacing
.- Parameters:
max_spacing – maximum spacing per dimension which the target spacing is randomly sampled from. Minimum sampling spacing is the maximum (over all frames of the image set) spacing per dimension of the input SharedImageSet. Default: [0.0, 0.0, 0.0]
probability – probability of applying this Operation. Default: 1.0
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RandomResolutionReductionOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RandomResolutionReductionOperation, max_spacing: numpy.ndarray[numpy.float64[3, 1]] = array([0., 0., 0.]), probability: float = 1.0, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.RandomRotationOperation(*args, **kwargs)
Bases:
Operation
Rotate input images and label maps with random angles.
- Parameters:
angles_range – List of floats specifying the upper bound (in degrees) of the range from with the rotation angles will be drawn uniformly. Default: [0, 0, 0]
adjust_size – Increase image size to include the whole rotated image or keep current dimensions. Default: False
apply_now – Bake transformation right way (otherwise, just changes the matrix). Default: False
probability – Float in [0;1] defining the probability for the operation to be executed. Default: 1.0
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RandomRotationOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RandomRotationOperation, angles_range: numpy.ndarray[numpy.float64[3, 1]] = array([0., 0., 0.]), adjust_size: bool = False, apply_now: bool = False, probability: float = 1.0, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.RandomScalingOperation(*args, **kwargs)
Bases:
Operation
Scale input images and label maps with random factors.
- Parameters:
scales_range (vec3) – List of floats specifying the upper bound of the range from which the scaling ofset will be sampled. The scaling factor will be drawn uniformly within [1-scale, 1+scale]. Scale should be between 0 and 1. Default: [0.5, 0.5, 0.5]
log_scales_range (vec3) – List of floats specifying the upper bound of the range from which the scaling factor will be drawn uniformly in log scale. The scaling will then be distributed within [1/log_scale, log_scale]. Default: [2., 2., 2.]
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)log_parameterization (bool) – If true, uses the log scales range parameterization, otherwise uses the scales range parameterization. Default: False
apply_now (bool) – Bake transformation right way (otherwise, just changes the matrix). Default: False
probability (float) – Float in [0;1] defining the probability for the operation to be executed. Default: 1.0
- Other parameters accepted by configure():
log_parametrization: False
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RandomScalingOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RandomScalingOperation, scales_range: numpy.ndarray[numpy.float64[3, 1]] = array([0.5, 0.5, 0.5]), log_scales_range: numpy.ndarray[numpy.float64[3, 1]] = array([2., 2., 2.]), log_parameterization: bool = False, apply_now: bool = False, probability: float = 1.0, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.RandomSmoothOperation(*args, **kwargs)
Bases:
Operation
Apply a random smoothing on the image (Gaussian kernel). The kernel can be parameterized either in pixel or in mm, and can be anisotropic. The half kernel size is distributed uniformly between half_kernel_bounds[0] and half_kernel_bounds[1]. \(\textnormal{image_output} = \textnormal{image} * \textnormal{gaussian_kernel}(\sigma)\) , with \(\sigma \sim U(\textnormal{half_kernel_bounds}[0], \textnormal{half_kernel_bounds}[1])\)
- Parameters:
half_kernel_bounds – Bounds for the half kernel size. The final kernel size is 2 times the sampled half kernel size plus one. Default: [1, 1]
kernel_size_in_mm – Interpret kernel size as mm. Otherwise uses pixels. Default: False
isotropic – Forces the randomly drawn kernel size to be isotropic. Default: True
probability – Value in [0.0; 1.0] indicating the probability of this operation to be performed. Default: 1.0
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RandomSmoothOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RandomSmoothOperation, half_kernel_bounds: numpy.ndarray[numpy.float64[2, 1]] = array([1, 1], dtype=int32), kernel_size_in_mm: bool = False, isotropic: bool = True, probability: float = 1.0, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.RandomTemplateInpaintingOperation(*args, **kwargs)
Bases:
Operation
Inpaints a template into an image with randomly selected spatial and intensity transformation in a given range.
- Parameters:
template_paths – paths from which a template .imf file is randomly loaded.
rotation_range – rotation of template in degrees per axis randomly sampled from [-rotation_range, rotation_range]. Default: [0, 0, 0]
translation_range – translation of template in degrees per axis randomly sampled from [-translation_range, translation_range]. Default: [0, 0, 0]
template_mult_factor_range – Multiply template intensities with a factor randomly sampled from this range. Default: [0.0, 0.0]
add_values_to_existing – Adding values to input image rather than replacing them. Default: False
probability – Float in [0;1] defining the probability for the operation to be executed. Default: 1.0
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RandomTemplateInpaintingOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RandomTemplateInpaintingOperation, template_paths: list[str] = [], rotation_range: numpy.ndarray[numpy.float64[3, 1]] = array([0., 0., 0.]), translation_range: numpy.ndarray[numpy.float64[3, 1]] = array([0., 0., 0.]), template_mult_factor_range: numpy.ndarray[numpy.float64[2, 1]] = array([0., 0.]), add_values_to_existing: bool = False, probability: float = 1.0, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.RectifyRotationOperation(*args, **kwargs)
Bases:
Operation
Sets the image matrix to the closest xyz-axis aligned rotation, effectively making every rotation angle a multiple of 90 degrees. This is useful when the values of the rotation are unimportant but the axis flips need to be preserved. If used before
BakeTransformationOperation
, this operation will avoid oblique angles and a lot of zero padding.- Parameters:
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RectifyRotationOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RectifyRotationOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.RemoveMaskOperation(*args, **kwargs)
Bases:
Operation
Removes the mask of all input images.
- Parameters:
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RemoveMaskOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RemoveMaskOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.RemoveOperation(*args, **kwargs)
Bases:
Operation
Removes a set of fields from a data item.
- Parameters:
apply_to – fields to mark as targets (will initialize the underlying
apply_to
parameter)device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RemoveOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RemoveOperation, source: set[str], *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.RenameOperation(*args, **kwargs)
Bases:
Operation
Renames a set of fields of a data item.
- Parameters:
source – list of the elements to be replaced
target – list of names of the new elements (must match the size of source)
throw_error_on_missing_source – if source field is missing, then throw an error (otherwise warn about unexpected behavior and do nothing). Default: True
throw_error_on_existing_target – if target field already exists, then throw an error (otherwise warn about unexpected behavior and overwrite it). Default: True
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RenameOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RenameOperation, source: list[str], target: list[str], throw_error_on_missing_source: bool = True, throw_error_on_existing_target: bool = True, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.ReplaceLabelsValuesOperation(*args, **kwargs)
Bases:
Operation
Replace some label values with other values (only works for integer-typed labels).
- Parameters:
old_values – List of integer values to be replaced. All values that are not in this list will remain unchanged.
new_values – List of integer values to replace
old_values
. It must have the same size asold_values
, since there should be a one-to-one mapping.update_labelsdatacomponent – Replaces the old-values in the LabelsDataComponent with the mapped ones. Default: True
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.ReplaceLabelsValuesOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.ReplaceLabelsValuesOperation, old_values: list[int], new_values: list[int], update_labelsdatacomponent: bool = True, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.ResampleDimsOperation(*args, **kwargs)
Bases:
Operation
Resample the input to fixed target dimensions.
- Parameters:
target_dims – Target dimensions in pixels as [Width, Height, Slices].
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.ResampleDimsOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.ResampleDimsOperation, target_dims: numpy.ndarray[numpy.int32[3, 1]], *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.ResampleKeepingAspectRatioOperation(*args, **kwargs)
Bases:
Operation
Resample input to target dimensions while keeping aspect ratio of original images. The target dimensions are specified by either:
one target dimension, i.e.: target_dim_x: 128. In such case the resampling will keep the aspect ratio of dimension y and z wrt x.
two target dimensions, i.e.: target_dim_x: 128, i.e.: target_dim_y: 128 and which dimension to consider for preserving the aspect ratio of the leftover dimension, i.e. keep_aspect_ratio_wrt: x.
- Parameters:
keep_aspect_ratio_wrt – specifies the dimension to which lock the aspect ratio, please assign either of “”, “x”, “y” or “z”. If only one target_dim is specified, then this can be empty (or must match the given target_dim). If all the target_dim args are specified, then this argument must be empty, however, in this case ResampleDims should then be preferred.
target_dim_x – either the target width or None if this dimension will be computed automatically by preserving the aspect ratio.
target_dim_y – either the target height or None if this dimension will be computed automatically by preserving the aspect ratio.
target_dim_z – for 3D images, either the target slices or None if this dimension will be computed automatically by preserving the aspect ratio.
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.ResampleKeepingAspectRatioOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.ResampleKeepingAspectRatioOperation, keep_aspect_ratio_wrt: str = ‘’, target_dim_x: Optional[int] = 1, target_dim_y: Optional[int] = 1, target_dim_z: Optional[int] = 1, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.ResampleOperation(*args, **kwargs)
Bases:
Operation
Resample the input to a fixed target resolution.
- Parameters:
resolution – Target spacing in mm.
preserve_extent – Preserve the exact spatial extent of the image, adjusting the output spacing
resolution
accordingly (since the extent is not always a multiple ofresolution
). Default: Truedevice – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.ResampleOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.ResampleOperation, resolution: numpy.ndarray[numpy.float64[3, 1]], preserve_extent: bool = True, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.ResampleToInputOperation(*args, **kwargs)
Bases:
Operation
Resample the input image with respect to the image in
ReferenceImageDataComponent
- Parameters:
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.ResampleToInputOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.ResampleToInputOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.ResetCriterion(*args, **kwargs)
Bases:
pybind11_object
Members:
Fixed
SmallestLoader
LargestLoader
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.ResetCriterion, value: int) -> None
__init__(self: imfusion.machinelearning._bindings.ResetCriterion, arg0: str) -> None
- Fixed = <ResetCriterion.Fixed: 0>
- LargestLoader = <ResetCriterion.LargestLoader: 2>
- SmallestLoader = <ResetCriterion.SmallestLoader: 1>
- property name
- property value
- class imfusion.machinelearning.ResolutionReductionOperation(*args, **kwargs)
Bases:
Operation
Downsamples the image to the target_spacing and upsamples again to the original spacing to reduce image information.
- Parameters:
target_spacing – spacing per dimension to which the image is resampled before it is resampled back
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.ResolutionReductionOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.ResolutionReductionOperation, target_spacing: numpy.ndarray[numpy.float64[3, 1]], *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.RotationOperation(*args, **kwargs)
Bases:
Operation
Rotate input images and label maps with fixed angles.
- Parameters:
angles – Rotation angles in degrees. Default: [0, 0, 0]
adjust_size – Increase image size to include the whole rotated image or keep current dimensions. Default: False
apply_now – Bake transformation right way (otherwise, just changes the matrix). Default: False
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RotationOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RotationOperation, angles: numpy.ndarray[numpy.float64[3, 1]] = array([0., 0., 0.]), adjust_size: bool = False, apply_now: bool = False, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.RunModelOperation(*args, **kwargs)
Bases:
Operation
Run a machine learning model on the input item and merge the prediction to the input item. The input field names specified in the model config yaml will be use to determine which fields in the input data item the model is run. If the model doesn’t specify any input field, i.e. is a single input model, the user can either provide an input data item with a single image element, or use the
apply_to
to specify on which field the model should be run. The input item will be populated with the model prediction. The field names are those specified in the model configuration. If no output name is specified (i.e. single output case), the prediction will be associated to the field “Prediction”- Parameters:
config_path – path to the YAML configuration file of the pixelwise model
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.RunModelOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.RunModelOperation, config_path: str, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.SISBasedElement
Bases:
DataElement
- to_sis(self: SISBasedElement) SharedImageSet
- property sis
Access to the underlying SharedImageSet.
- class imfusion.machinelearning.ScalingOperation(*args, **kwargs)
Bases:
Operation
Scale input images and label maps with fixed factors.
- Parameters:
scales – Scaling factor applied to each dimension. Default: [1, 1, 1]
apply_now – Bake transformation right way (otherwise, just changes the matrix). Default: True
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.ScalingOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.ScalingOperation, scales: numpy.ndarray[numpy.float64[3, 1]] = array([1., 1., 1.]), apply_now: bool = True, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.SelectChannelsOperation(*args, **kwargs)
Bases:
Operation
Keeps a subset of the input channels specified by the selected channel indices (0-based indexing).
- Parameters:
selected_channels – List of channels to be selected in input. If empty, use all channels.
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.SelectChannelsOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.SelectChannelsOperation, selected_channels: list[int], *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.SetLabelModalityOperation(*args, **kwargs)
Bases:
Operation
Sets the input modality. If the target modality is
LABEL
, warns and skips fields that are not unsigned 8-bit integer. The default processing policy is to apply to targets only.- Parameters:
label_names – List of non-background label names. The label with index zero is assigned the name ‘Background’.
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
- Other parameters accepted by configure():
modality: 8
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.SetLabelModalityOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.SetLabelModalityOperation, label_names: list[str], *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.SetMatrixToIdentityOperation(*args, **kwargs)
Bases:
Operation
Set the matrices of all images to identity (associated landmarks and boxes will be moved accordingly).
- Parameters:
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.SetMatrixToIdentityOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.SetMatrixToIdentityOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.SetModalityOperation(*args, **kwargs)
Bases:
Operation
Sets the input modality. If the target modality is
LABEL
, warns and skips fields that are not unsigned 8-bit integer. The default processing policy is to apply to all fields.- Parameters:
modality – Modality to set the input to.
label_names – List of non-background label names. The label with index zero is assigned the name ‘Background’. Default: [].
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.SetModalityOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.SetModalityOperation, modality: imfusion._bindings.Data.Modality, label_names: list[str] = [], *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.SetSpacingOperation(*args, **kwargs)
Bases:
Operation
Modify images so that image elements have specified spacing (associated landmarks and boxes will be moved accordingly). :param spacing: Target spacing. :param device: Specifies whether this Operation should run on CPU or GPU. :param seed: Specifies seeding for any randomness that might be contained in this operation. :param error_on_unexpected_behaviour: Specifies whether to throw an exception instead of warning about unexpected behaviour. :param apply_to: Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)Overloaded function.
__init__(self: imfusion.machinelearning._bindings.SetSpacingOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.SetSpacingOperation, spacing: numpy.ndarray[numpy.float64[3, 1]] = array([1., 1., 1.]), *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.SigmoidOperation(*args, **kwargs)
Bases:
Operation
Apply a sigmoid function on the input image. \(\textnormal{output} = 1.0/(1.0 + \exp(- \textnormal{scale} * \textnormal{input}))\)
- Parameters:
scale – Scale parameter within the sigmoid function. Default: 1.0
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.SigmoidOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.SigmoidOperation, scale: float = 1.0, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.SmoothOperation(*args, **kwargs)
Bases:
Operation
Run a convolution with a Gaussian kernel on the input image. The kernel can be parameterized either in pixel or in mm, and can be anisotropic.
- Parameters:
half_kernel_size – Half size of the convolution kernel in pixels or mm.
kernel_size_in_mm – Interpret kernel size as mm. Otherwise uses pixels. Default: False
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.SmoothOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.SmoothOperation, half_kernel_size: numpy.ndarray[numpy.float64[3, 1]], kernel_size_in_mm: bool = False, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.SoftmaxOperation(*args, **kwargs)
Bases:
Operation
Computes channel-wise softmax on input.
- Parameters:
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.SoftmaxOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.SoftmaxOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.SplitROISampler(*args, **kwargs)
Bases:
ImageROISampler
Sampler which samples one ROI from the input image and label map with a target size, regularly along each dimension. This sampler mimics the situation at test-time, when one image may be regularly divided in all dimensions.
- Parameters:
roi_size – Target size of the ROIs to be extracted as [Width, Height, Slices]
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
- Other parameters accepted by configure():
label_padding_mode: EnumStringParam assigned to clamp in {clamp; mirror; zero}
padding_mode: EnumStringParam assigned to clamp in {clamp; mirror; zero}
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.SplitROISampler, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.SplitROISampler, roi_size: numpy.ndarray[numpy.int32[3, 1]], *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.SurfaceDistancesMetric(self: SurfaceDistancesMetric, symmetric: bool = True, crop_margin: int = -1)
Bases:
Metric
- class Results(self: Results)
Bases:
pybind11_object
- property all_distances
- property max_absolute_distance
- property mean_absolute_distance
- property mean_signed_distance
- compute_distances(self: SurfaceDistancesMetric, prediction: SharedImageSet, target: SharedImageSet) list[dict[int, Results]]
- class imfusion.machinelearning.SwapImageAndLabelsOperation(*args, **kwargs)
Bases:
Operation
Swaps image and label map.
- Parameters:
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.SwapImageAndLabelsOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.SwapImageAndLabelsOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.SyncOperation(*args, **kwargs)
Bases:
Operation
Synchronizes shared memory (CPU <-> OpenGL) of images.
- Parameters:
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.SyncOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.SyncOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.TanhOperation(*args, **kwargs)
Bases:
Operation
Apply a tanh function on the input image. \(\textnormal{output} = \tanh(\textnormal{scale} * \textnormal{input})\)
- Parameters:
scale – Scale parameter within the tanh function. Default: 1.0
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.TanhOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.TanhOperation, scale: float = 1.0, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.TargetTag(self: TargetTag)
Bases:
DataComponentBase
- class imfusion.machinelearning.TemplateInpaintingOperation(*args, **kwargs)
Bases:
Operation
Inpaints a template into an image with specified spatial and intensity transformation.
- Parameters:
template_path – path to load template .imf file.
template_rotation – rotation of template in degrees per axis. Default: [0, 0, 0]
template_translation – translation of template in degrees per axis. Default: [0, 0, 0]
add_values_to_existing – Adding values to input image rather than replacing them. Default: False
template_mult_factor – Multiply template intensities with this factor. Default: 1.0
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.TemplateInpaintingOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.TemplateInpaintingOperation, template_path: str = ‘’, template_rotation: numpy.ndarray[numpy.float64[3, 1]] = array([0., 0., 0.]), template_translation: numpy.ndarray[numpy.float64[3, 1]] = array([0., 0., 0.]), add_values_to_existing: bool = False, template_mult_factor: float = 1.0, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.Tensor(self: Tensor, tensor: Buffer)
Bases:
Data
Class for managing raw Tensors
This class is meant to have direct control over tensors either passed to, or received from a MachineLearningModel. Unlike the SISBasedElements, there is no inherent stacking/permuting of tensors, and there are no constraints on the order of the Tensor.
Note
The API for this class is experimental and may change soon.
Create an ml.Tensor from a numpy array.
- property shape
Return shape of tensor.
- class imfusion.machinelearning.TensorElement(self: TensorElement, tensor: Tensor)
Bases:
DataElement
Class for managing raw Tensors
This class is meant to have direct control over tensors either passed to, or received from a MachineLearningModel. Unlike the SISBasedElements, there is no inherent stacking/permuting of tensors, and there are no constraints on the order of the Tensor.
Note
The API for this class is experimental and may change soon.
Initialize a TensorElement from a Tensor.
- Parameters:
tensor (imfusion.Tensor) –
- property tensor
Access to the underlying Tensor.
- class imfusion.machinelearning.ThresholdOperation(*args, **kwargs)
Bases:
Operation
Threshold the input image to a binary map with only 0 or 1 values.
- Parameters:
value – Threshold value (strictly) above which the pixel will set to 1. Default: 0.0
to_ubyte – Output image must be unsigned byte instead of float. Default: False
device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
apply_to – Specifies fields in a DataItem that this Operation should process (if empty, will select suitable fields based on the current
processing_policy
)
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.ThresholdOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.ThresholdOperation, value: float = 0.0, to_ubyte: bool = False, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, apply_to: Optional[list[str]] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.UnmarkAsTargetOperation(*args, **kwargs)
Bases:
Operation
Unmark elements from the input data item as learning “target”. This operation is the opposite of
MarkAsTargetOperation
.- Parameters:
apply_to – fields to unmark as targets (will initialize the underlying
apply_to
parameter)device – Specifies whether this Operation should run on CPU or GPU.
seed – Specifies seeding for any randomness that might be contained in this operation.
error_on_unexpected_behaviour – Specifies whether to throw an exception instead of warning about unexpected behaviour.
Overloaded function.
__init__(self: imfusion.machinelearning._bindings.UnmarkAsTargetOperation, *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
__init__(self: imfusion.machinelearning._bindings.UnmarkAsTargetOperation, apply_to: list[str], *, device: Optional[imfusion.machinelearning._bindings.ComputingDevice] = None, seed: Optional[int] = None, error_on_unexpected_behaviour: Optional[bool] = None) -> None
- class imfusion.machinelearning.VectorElement(self: VectorElement, vectors: SharedImageSet)
Bases:
SISBasedElement
Initialize a VectorElement from a SharedImageSet.
- Parameters:
image (SharedImageSet) – image to be converted to a VectorElement
- from_torch()
- imfusion.machinelearning.available_cpp_engines() list[str]
Returns the list of registered C++ engines available for usage in MachineLearningModel.
- imfusion.machinelearning.available_engines() list[str]
Returns the list of all registered engines available for usage in MachineLearningModel.
- imfusion.machinelearning.available_py_engines() list[str]
Returns the list of registered Python engines available for usage in MachineLearningModel.
- imfusion.machinelearning.is_semantic_segmentation_map(sis: SharedImageSet) bool
- imfusion.machinelearning.is_target(sis: SharedImageSet) bool
- imfusion.machinelearning.propertylist_to_data_loader_specs(properties: list[Properties]) list[DataLoaderSpecs]
Parse a properties object into a vector of DataLoaderSpecs.
- imfusion.machinelearning.register_filter_func(arg0: str, arg1: Callable[[DataItem], bool]) None
Register user-defined function to be used in Dataset.filter decorator function
- imfusion.machinelearning.register_map_func(arg0: str, arg1: Callable[[DataItem], None]) None
Register user-defined function to be used in Dataset.map decorator function
- imfusion.machinelearning.tag_as_target(sis: SharedImageSet) None
- imfusion.machinelearning.to_torch(self: DataElement | SharedImageSet | SharedImage, device: device = None, dtype: dtype = None, same_as: Tensor = None) Tensor
Convert SharedImageSet or a SharedImage to a torch.Tensor.
- Parameters:
self (DataElement | SharedImageSet | SharedImage) – Instance of SharedImageSet or SharedImage (this function bound as a method to SharedImageSet and SharedImage)
device (device) – Target device for the new torch.Tensor
dtype (dtype) – Type of the new torch.Tensor
same_as (Tensor) – Template tensor whose device and dtype configuration should be matched.
device
anddtype
are still applied afterwards.
- Returns:
New torch.Tensor
- Return type:
- imfusion.machinelearning.untag_as_target(sis: SharedImageSet) None
imfusion.mesh
Submodules containing routines for pre- and post-processing meshes.
- class imfusion.mesh.PointDistanceResult(self: PointDistanceResult, mean_distance: float, median_distance: float, standard_deviation: float, min_distance: float, max_distance: float, distances: ndarray[numpy.float64[m, 1]])
Bases:
pybind11_object
- property distances
- property max_distance
- property mean_distance
- property median_distance
- property min_distance
- property standard_deviation
- class imfusion.mesh.Primitive(self: Primitive, value: int)
Bases:
pybind11_object
Enumeration of supported mesh primitives.
Members:
SPHERE
CYLINDER
PYRAMID
CUBE
ICOSAHEDRON_SPHERE
CONE
GRID
- CONE = <Primitive.CONE: 5>
- CUBE = <Primitive.CUBE: 3>
- CYLINDER = <Primitive.CYLINDER: 1>
- GRID = <Primitive.GRID: 6>
- ICOSAHEDRON_SPHERE = <Primitive.ICOSAHEDRON_SPHERE: 4>
- PYRAMID = <Primitive.PYRAMID: 2>
- SPHERE = <Primitive.SPHERE: 0>
- property name
- property value
- imfusion.mesh.create(shape: Primitive) Mesh
Create a mesh primitive.
- Args:
shape: The shape of the primitive to create.
- imfusion.mesh.point_distance(*args, **kwargs)
Overloaded function.
point_distance(target: imfusion._bindings.Mesh, source: imfusion._bindings.Mesh, signed_distance: bool = False, range_of_interest: Optional[tuple[int, int]] = None) -> imfusion._bindings.mesh.PointDistanceResult
Compute point-wise distances between: 1. source mesh vertices and target mesh surface, 2. source point cloud and target mesh surface, 3. source mesh vertices and target point cloud vertices, 4. source point cloud and the target point cloud
- Args:
target: Target data, defining the locations to estimate the distance to. source: Source data, defining the locations to estimate the distance from. signed_distance: Whether to compute signed distances (applicable to meshes only). Defaults to False. range_of_interest: Optional range of distances to consider (min, max) in percentage (integer-valued). Distances outside of this range will be set to NaN. Statistics are computed only over non-NaN distances. Defaults to None.
- Returns:
A PointDistanceResult object containing the computed statistics and distances.
point_distance(target: imfusion._bindings.PointCloud, source: imfusion._bindings.Mesh, signed_distance: bool = False, range_of_interest: Optional[tuple[int, int]] = None) -> imfusion._bindings.mesh.PointDistanceResult
point_distance(target: imfusion._bindings.PointCloud, source: imfusion._bindings.PointCloud, signed_distance: bool = False, range_of_interest: Optional[tuple[int, int]] = None) -> imfusion._bindings.mesh.PointDistanceResult
point_distance(target: imfusion._bindings.Mesh, source: imfusion._bindings.PointCloud, signed_distance: bool = False, range_of_interest: Optional[tuple[int, int]] = None) -> imfusion._bindings.mesh.PointDistanceResult
imfusion.registration
This module contains functionality for all kinds of registration tasks. You can find a demonstration of how to perform image registration on our GitHub.
- class imfusion.registration.AbstractImageRegistration
Bases:
BaseAlgorithm
- class imfusion.registration.DescriptorsRegistrationAlgorithm(self: DescriptorsRegistrationAlgorithm, arg0: SharedImageSet, arg1: SharedImageSet)
Bases:
pybind11_object
Class for performing image registration using local feature descriptors.
This algorithm performs the following steps: 1) Preprocess the fixed and moving images to prepare them for feature extraction. This consists of resampling to
spacing
and baking-in the rotation. 2) Extract feature descriptors using either DISAFeaturesAlgorithm or MINDDescriptorAlgorithm depending ondescriptor_type
. 3) Computes the weight for the moving image features. 4) Instantiates and usesFeatureMapsRegistrationAlgorithm
to register the feature descriptors images. The computed registration is then applied to the moving image.- class DescriptorType(self: DescriptorType, value: int)
Bases:
pybind11_object
Members:
DISA : Use the DISA descriptors defined in the paper “DISA: DIfferentiable Similarity Approximation for Universal Multimodal Registration”, Ronchetti et al. 2023
MIND
- DISA = <DescriptorType.DISA: 0>
- MIND = <DescriptorType.MIND: 1>
- property name
- property value
- globalRegistration(self: DescriptorsRegistrationAlgorithm) None
- heatmap(self: DescriptorsRegistrationAlgorithm, point: ndarray[numpy.float64[3, 1]]) SharedImageSet
- initialize_pose(self: DescriptorsRegistrationAlgorithm) None
- localRegistration(self: DescriptorsRegistrationAlgorithm) None
- processed_fixed(self: DescriptorsRegistrationAlgorithm) SharedImageSet
- processed_moving(self: DescriptorsRegistrationAlgorithm) SharedImageSet
- DISA = <DescriptorType.DISA: 0>
- MIND = <DescriptorType.MIND: 1>
- property spacing
- property type
- property weight
- class imfusion.registration.ImageRegistrationAlgorithm(self: imfusion.registration.ImageRegistrationAlgorithm, fixed: imfusion._bindings.SharedImageSet, moving: imfusion._bindings.SharedImageSet, model: imfusion.registration.ImageRegistrationAlgorithm.TransformationModel = <TransformationModel.LINEAR: 0>)
Bases:
BaseAlgorithm
High-level interface for image registration. The image registration algorithm wraps several concrete image registration algorithms (e.g. linear and deformable) and extends them with pre-processing techniques. Available pre-processing options include downsampling and gradient-magnitude used for LC2. On creation, the algorithm tries to find the best settings for the registration problem depending on the modality, size and other properties of the input images. The image registration comes with a default set of different transformation models.
- Parameters:
fixed – Input image that stays fixed during the registration.
moving – Input image that will be moving registration.
model – Defines the registration approach to use. Defaults to rigid / affine registration.
- class PreprocessingOptions(self: PreprocessingOptions, value: int)
Bases:
pybind11_object
Flags to enable/disable certain preprocessing options.
Members:
NO_PREPROCESSING : Disable preprocessing completely (this cannot be ORed with other options)
RESTRICT_MEMORY : Downsamples the images so that the registration will not use more than a given maximum of (video) memory
ADJUST_SPACING : if the spacing difference of both images is large, the spacing of the adjusted to the smaller one
IGNORE_FILTERING : Ignore any PreProcessingFilter required by the AbstractImageRegistration object
CACHE_RESULTS : Store PreProcessing results and only re-compute if necessary
NORMALIZE : Normalize images to float range [0.0, 1.0]
- ADJUST_SPACING = <PreprocessingOptions.ADJUST_SPACING: 2>
- CACHE_RESULTS = <PreprocessingOptions.CACHE_RESULTS: 16>
- IGNORE_FILTERING = <PreprocessingOptions.IGNORE_FILTERING: 4>
- NORMALIZE = <PreprocessingOptions.NORMALIZE: 32>
- NO_PREPROCESSING = <PreprocessingOptions.NO_PREPROCESSING: 0>
- RESTRICT_MEMORY = <PreprocessingOptions.RESTRICT_MEMORY: 1>
- property name
- property value
- class TransformationModel(self: TransformationModel, value: int)
Bases:
pybind11_object
Available transformation models. Each one represents a specific registration approach.
Members:
LINEAR : Rigid or affine DOF registration
FFD : Registration with non-linear Free-Form deformations
TPS : Registration with non-linear Thin-Plate-Splines deformations
DEMONS : Registration with non-linear dense (per-pixel) deformations
GREEDY_DEMONS : Registration with non-linear dense (per-pixel) deformations using patch-based SimilarityMeasures
POLY_RIGID : Registration with poly-rigid (i.e. partially piecewise rigid) deformations.
USER_DEFINED
- DEMONS = <TransformationModel.DEMONS: 3>
- FFD = <TransformationModel.FFD: 1>
- GREEDY_DEMONS = <TransformationModel.GREEDY_DEMONS: 4>
- LINEAR = <TransformationModel.LINEAR: 0>
- POLY_RIGID = <TransformationModel.POLY_RIGID: 5>
- TPS = <TransformationModel.TPS: 2>
- USER_DEFINED = <TransformationModel.USER_DEFINED: 100>
- property name
- property value
- compute_preprocessing(self: ImageRegistrationAlgorithm) bool
Applies the pre-processing options on the input images. Results are cached so this is a no-op if the preprocessing options have not changed. This function is automatically called by the compute method, and therefore does not have to be explicitly called in most cases.
- reset(self: ImageRegistrationAlgorithm) None
Resets the transformation of moving to its initial transformation.
- swap_fixed_and_moving(self: ImageRegistrationAlgorithm) None
Swaps which image is considered fixed and moving.
- ADJUST_SPACING = <PreprocessingOptions.ADJUST_SPACING: 2>
- CACHE_RESULTS = <PreprocessingOptions.CACHE_RESULTS: 16>
- DEMONS = <TransformationModel.DEMONS: 3>
- FFD = <TransformationModel.FFD: 1>
- GREEDY_DEMONS = <TransformationModel.GREEDY_DEMONS: 4>
- IGNORE_FILTERING = <PreprocessingOptions.IGNORE_FILTERING: 4>
- LINEAR = <TransformationModel.LINEAR: 0>
- NORMALIZE = <PreprocessingOptions.NORMALIZE: 32>
- NO_PREPROCESSING = <PreprocessingOptions.NO_PREPROCESSING: 0>
- POLY_RIGID = <TransformationModel.POLY_RIGID: 5>
- RESTRICT_MEMORY = <PreprocessingOptions.RESTRICT_MEMORY: 1>
- TPS = <TransformationModel.TPS: 2>
- USER_DEFINED = <TransformationModel.USER_DEFINED: 100>
- property best_similarity
Returns the best value of the similarity measure after optimization.
- property fixed
Returns input image that is currently considered to be fixed.
- property is_deformable
Indicates whether the current configuration uses a deformable registration
- property max_memory
Restrict the memory used by the registration to the given amount in mebibyte. The value can be set in any case but will only have an effect if the RestrictMemory option is enabled. This will restrict video memory as well. The minimum size is 64 MB (the value will be clamped).
- property moving
Returns input image that is currently considered to be moving.
- property optimizer
Reference to the underlying optimizer.
- property param_registration
Reference to the underlying parametric registration object that actually performs the computation (e.g. parametric registration, deformable registration, etc.). Will return None if the transformation model is not parametric.
- property preprocessing_options
Which options should be enabled for preprocessing. The options are bitwise OR combination of PreprocessingOptions.
- property registration
Reference to the underlying registration object that actually performs the computation (e.g. parametric registration, deformable registration, etc.)
- property transformation_model
Transformation model to be used for the registration. If the transformation model changes, internal objects will be deleted and recreated. The configuration of the current model will be saved and the new model will be configured with any previously saved configuration for that model. Any attached identity deformations are removed from both images.
- property verbose
Indicates whether the algorithm is going to print additional and detailed info messages.
- class imfusion.registration.ParametricImageRegistration
Bases:
BaseAlgorithm
- class imfusion.registration.RegistrationInitAlgorithm(self: RegistrationInitAlgorithm, image1: SharedImageSet, image2: SharedImageSet)
Bases:
BaseAlgorithm
Initialize the registration of two volumes by moving the second one.
- class Mode(self: Mode, value: int)
Bases:
pybind11_object
Specifies how the distance between images should be computed.
Members:
BOUNDING_BOX
CENTER_OF_MASS
- BOUNDING_BOX = <Mode.BOUNDING_BOX: 0>
- CENTER_OF_MASS = <Mode.CENTER_OF_MASS: 1>
- property name
- property value
- BOUNDING_BOX = <Mode.BOUNDING_BOX: 0>
- CENTER_OF_MASS = <Mode.CENTER_OF_MASS: 1>
- property mode
Initialization mode (align bounding box centers, or center of mass).
- class imfusion.registration.VolumeBasedMeshRegistrationAlgorithm(self: VolumeBasedMeshRegistrationAlgorithm, fixed: Mesh, moving: Mesh, pointcloud: PointCloud = None)
Bases:
BaseAlgorithm
Calculates a deformable registration between two meshes by calculating a deformable registration between distance volumes. Internally, an instance of the DemonsImageRegistration algorithm is used to register the “fixed” distance volume to the “moving” distance volume. As this registration computes the inverse of the mapping from the fixed to the moving volume, this directly yields a registration of the “moving” Mesh to the “fixed” Mesh.
- imfusion.registration.apply_deformation(image: SharedImageSet, adjust_size: bool = True, nearest_interpolation: bool = False) SharedImageSet
Creates a deformed image from the input image and its deformation.
- Parameters:
image (SharedImageSet) – Input image assumed to have a deformation.
adjust_size (bool) – Whether the resulting image should adjust its size to encompass the deformation.
nearest_interpolation (bool) – Whether nearest or linear interpolation is used.